

Produto 9.2 Projeto Executivo de Pavimentação e Restauração - R01

Projetos Básicos e Executivos de Engenharia, da Implantação e Adequação do Sistema Viário de Acesso ao Setor Noroeste, na Rodovia DF-003 (EPIA) e Via STN (Setor Terminal Norte), incluindo as Interligações com as Vias W9 e W7 (SHCNW - Trecho 1) e ao TAN (Terminal Asa Norte - BRT Norte)

Sumário

1	INTF	RODUÇÃO	3
2	LOC	ALIZAÇÃO	4
3	PRO	JETO DE PAVIMENTO FLEXÍVEL NOVO	5
	3.1	Estudo Geotécnico	5
	3.2	Estudo de Tráfego	7
	3.3	Dimensionamento Prévio – Manual DNIT	24
	3.4	Dimensionamento Definitivo – Análise Mecanística	28
	3.4.1	Parâmetros de Entrada	29
	3.4.2	Resultados Obtidos	32
	3.4.3	B Considerações Finais	39
4	PRO	JETO DE RESTAURAÇÃO DO PAVIMENTO FLEXÍVEL	43
	4.1	Introdução	43
	4.2	Levantamentos de Campo	44
	4.2.1	Avaliação Objetiva da Superfície de Pavimentos Flexíveis	44
	4.2.2	Levantamento Deflectométrico (Viga Benkelman)	44
	4.2.3	Sondagens e Ensaios de Laboratório	44
	4.2.4	Definição dos Segmentos Homogêneos	45
	4.3	Metodologia Adotada para o Dimensionamento	46
	4.3.1	Deflexões Recuperáveis	46
	4.3.2	Método TECNAPAV DNER PRO-269/94	46
	4.3.3	Método DNER PRO-011/79	49
	4.4	Soluções de Projeto	51
	4.4.1	Resultado do dimensionamento TECNAPAV DNER PRO-269/94	51
	4.4.2	Resultado do dimensionamento DNER PRO-011/79	54
	4.4.3	B Definição de Soluções de Recuperação	56

	4.4.	4 Resumo das soluções de recuperação	66
5	ESF	PECIFICAÇÕES TÉCNICAS DE MATERIAIS E SERVIÇOS	69
	5.1	Cimento Asfáltico de Petróleo modificado por Polímero Elastomérico	69
	5.2	Cimento Asfáltico de Petróleo - Restauração	70
	5.3	Microrrevestimento Asfáltico a frio modificado por Polímero	70
	5.4	Pintura de ligação	70
	5.5	Imprimação betuminosa	71
	5.6	Base: Brita Graduada Simples (BGS)	71
	5.7	Sub-base: Solo melhorado com Cal (Adição de 4%)	71
	5.8	Subleito: Solo local	71
	5.9	Fresagem	72
	5.10	Reparos Localizados e Remendos Profundos	73
	5.11	Selagem de Trincas	73
6	APF	RESENTAÇÃO DO PROJETO	74
7	ANE	EXOS	75
8	PRA	ANCHAS	79
9	ANG	OTAÇÃO DE RESPONSABILIDADE TÉCNICA – ARTS	80

EQUIPE TÉCNICA RESPONSÁVEL PELA ELABORAÇÃO DOS PROJETOS BÁSICO E EXECUTIVO DE ENGENHARIA PARA IMPLANTAÇÃO E ADEQUAÇÃO DO SISTEMA VIÁRIO DE ACESSO AO NOROESTE, NA RODOVIA DF-003 (EPIA) E VIA STN E AO TAN

COORDENAÇÃO TÉCNICA e EXECUÇÃO:

PAULO CAVALCANTI DE ALBUQUERQUE Arquiteto e Urbanista – CAU: A80095-3	
ANA CECÍLIA PARISI Arquiteta e Urbanista – CAU: A80096-1	
THIAGO PEIXOTO NOVAIS Engenheiro Civil – CREA 147293/D-MG	
RENATO GRILLO ELY Engenheiro Civil – CREA 13611/D-RS	
JORDAN PAULO MEROS Arquiteto e Urbanista – CAU: A55153-8	
GERALDO AUGUSTO NOVAIS Engenheiro Civil – CREA 30616/D-MG	
VINÍCIUS RESENDE DOMINGUES Engenheiro Civil - CREA 21229/D-DF	

APRESENTAÇÃO

O Departamento de Estradas de Rodagem do Distrito Federal, sob a coordenação da Superintendência Técnica, firmou com a **AeT Arquitetura Planejamento e Transportes Ltda o Contrato nº 005/2021** que tem por objetivo contratação de empresa especializada para Elaboração de Projetos Básico e Executivo de Engenharia para Implantação e Adequação do Sistema Viário de Acesso ao Noroeste, na Rodovia DF-003 (EPIA), via STN e ao TAN (Terminal Asa Norte).

O presente relatório corresponde ao **Produto 9.2 - Projeto Executivo de Pavimentação e Restauração**, na sua primeira revisão.

1 INTRODUÇÃO

A AeT Arquitetura Planejamento e Transportes submete ao Departamento de Estradas de Rodagem do Distrito Federal – DER/DF, para apreciação, os Estudos Geotécnicos e Geológicos para elaboração do projeto de Implantação e Adequação do Sistema Viário de Acesso ao Noroeste, na Rodovia DF-003 (EPIA) e Via STN (Setor Terminal Norte), incluindo as Interligações com as Vias W9 e W7 (SHCNW – Trecho 01) e ao TAN (Terminal Asa Norte).

O projeto de implantação e restauração do trecho de ligação entre o Setor Terminal Norte (STN) e a Estrada Parque Indústria e Abastecimento (EPIA), Brasília/DF, tem como objetivo a recuperação da capacidade estrutural do pavimento existente, assim como a melhoria da segurança e conforto do pavimento novo a ser implantado, na nova interseção proposta.

O projeto consiste no dimensionamento e definição de espessuras de reforço estrutural do pavimento, assim como de soluções para patologias superficiais de modo a aumentar a vida útil e melhorar a trafegabilidade do pavimento. O projeto respeita a metodologia e o rigor técnico do Método de Projeto de Pavimentos Flexíveis e Rígidos do DNIT e DER/DF, Escopo Básico EB 114 "Projeto Básico de Engenharia para Restauração de Pavimentos de Rodovias", e os demais normativos para indicação de soluções restauração de pavimentos.

2 LOCALIZAÇÃO

A área do estudo em foco corresponde a conjunção da Estrada Parque Industria e Abastecimento – EPIA e a Via do Setor Terminal Norte, cuja demanda de tráfego sofre a influência das viagens produzidas no SMHLN e quadras da W3 Norte, além dos setores adjacentes: SHCNW e STN.

Figura 2.1. Circulação de Tráfego Urbano no SHCNW e STN

3 PROJETO DE PAVIMENTO FLEXÍVEL NOVO

3.1 Estudo Geotécnico

O estudo geotécnico, consolidados neste relatório, têm os resultados das sondagens detalhadas no Produto 5 - Estudos Geotécnicos. Ainda assim, para subsídio ao projeto de pavimento flexível a ser implantado, destacam-se os resultados obtidos na Tabela 3.1.

Tabela 3.1. Resumo dos resultados dos ensaios de subleito

						Gra	anulometria	a		
Sondage m	CB R (%)	Exp (%)	W óтіма (%)	γd máx (kg/m³)	>200#	Areia Fina (%)	Areia Grossa / Média (%)	Pedregulh o (%)	LL	IP
ST-01	10,0	0,04	27,4	1.485	59,4	21,4	15,4	3,8	42,2	12,3
ST-02	7,6	0,04	19,2	1.664	53,3	8,5	17,3	20,9	37,1	9,9
ST-03	7,0	0,01	19,2	1.755	57,8	15,9	25,1	1,2	37,9	12,2
ST-04	8,2	0,02	19,4	1.770	73,7	6,3	10,5	9,5	45,4	13,3
ST-05	9,5	0,02	27,2	1.605	32,1	9,0	17,9	41,0	42,1	10,7
ST-06	5,1	0,09	18,0	1.596	34,6	7,9	18,0	39,5	45,4	11,0
ST-07	6,1	0,00	26,8	1.490	51,1	30,4	16,8	1,7	38,5	8,8
ST-08	6,8	0,08	30,2	1.420	51,5	20,7	16,8	11,0	46,7	7,4

As amostras de sondagem da ST-02, ST-03 e ST-06 também foram submetidas aos ensaios de Mini MCV para verificação do comportamento laterítico, que afeta o dimensionamento mecanístico. Como resultado foram obtidas as seguintes características:

- ST-02 e ST-03: laterítico;
- ST-06: n\u00e3o later\u00edtico.

Em complemento as investigações de subleito, foi realizada uma campanha para identificação de material competente para as especificações técnica de sub-base. Assim, foram ensaiadas, em energia intermediária, amostras do solo local adicionadas a 4% ou 5% de cal hidratada (CH-III). Os resultados obtidos estão apresentados na Tabela 3.2.

Tabela 3.2. Resumo dos resultados dos ensaios para a sub-base

						Gra	anulometri	a		
Sondage m	CB R (%)	Exp (%)	W óтіма (%)	γd máx (kg/m³)	>200#	Areia Fina (%)	Areia Grossa / Média (%)	Pedregulh o (%)	LL	IP
ST-03 (4% cal)	33,0	0,01	19,7	1.700	61,7	12,0	22,5	3,8	34,8	11,7
ST-03 (5% cal)	39,6	0,02	17,3	1.666	53,2	18,1	27,5	1,2	31,4	4,6
ST-04	24,5	0,02	25,1	1.640	71,5	5,4	12,3	10,8	43,6	10,5

						Gra	anulometri	a	_	
Sondage m	CB R (%)	Exp (%)	W óтіма (%)	ɣd máx (kg/m³)	>200#	Areia Fina (%)	Areia Grossa / Média (%)	Pedregulh o (%)	ш	IP
(4% cal)										
ST-04 (5% cal)	33,2	0,01	24,3	1.615	51,4	14,1	14,9	19,6	38,6	8,5

Para o caso do subleito, a região de projeto foi considerada homogênea. Portanto, os dimensionamentos são embasados em um mesmo valor de CBR de projeto (CBR_P). Para o cálculo deste valor adotou-se a metodologia preconizada pela Instrução Geotécnica IP – 01/2004 da Prefeitura Municipal de São Paulo. Para o cálculo deste valor adotou-se a metodologia preconizada no Manual de Pavimentação do DNIT, aplicando-se as seguintes expressões:

$$ISC_p = \overline{ISC} - \frac{1,29 \times \sigma}{\sqrt{n}} - 0,68 \times \sigma$$

Em que:

$$\overline{ISC} = \frac{\sum ISC_i}{n}$$

$$\sigma = \sqrt{\frac{\sum \left(ISC_i - \overline{ISC}\right)^2}{n-1}}$$

n = número de amostras

Desta forma foram obtidos os valores de CBR_{PROJETADO} e CBR_{CALCULADO}, apresentados na Tabela 3.3.

Tabela 3.3. Valores calculados e adotados para o CBR

CBR _{PROJETADO} (%)	CBR _{CALCULADO} (%) *
5,0	5,7

Considerando o elevado desvio entre a sondagem com a menor capacidade de suporte (ST-06) e as investigações vizinhas (ST-01, ST-02 e ST-03), torna-se conveniente a adoção do menor valor (CBR_P = 5%) para que as variações estatísticas não mapeadas na amostragem proposta seja comportada. Somados a isso, minimizam-se os riscos de erros construtivos.

3.2 Estudo de Tráfego

3.2.1.1 Premissas

Para elaboração deste estudo de tráfego adotaram-se uma série de premissas, dentre as quais destacam-se:

- Relacionados aos documentos de referência:
 - O tráfego e as projeções da DF-003 foram fundamentados nos dados apresentados no Estudo Preliminar realizado pelo DER/DF;
 - O tráfego da VIA STN foi fundamentado em contagem única, realizada em 20/07/2021, pelo DER/DF. Assim, estes dados foram extrapolados por coeficientes análogos aos adotados na EPIA
- Relacionados a composição do tráfego:
 - O tráfego será aberto em 2023, considerando o ano de 2021 para projeto e 2022 para a realização das obras;
 - Considerando que os estudos e contagens subdividiram a composição do tráfego em leves, médios, pesados, semireboques, reboques, ônibus e motos, foram adotadas as seguintes correlações:
 - Leves = Carros de passeio;
 - Médio = Caminhonetas;
 - Pesado = Caminhão 3C;
 - Semi-reboques = Caminhão trator + semi-reboque 2S3;
 - Reboques = Bi Trem Articulado 3D4;
 - Ônibus = Ônibus 2C.
 - Adotou-se 70% dos veículos carregados no limite de tolerância da lei da balança (12,5%) e 30% fora de sua capacidade máxima.
 Para os veículos que trafegam aquém da capacidade máxima, adotou-se uma taxa de 90% do limite para o eixo dianteiro e 70% nos demais;
 - Para todas as vias estudadas foi atribuído um fator de pista igual a 0,35.

3.2.1.2 Abordagem Teórica

A previsão dos efeitos das solicitações do tráfego sobre o desempenho dos pavimentos é dificultada pelo fato de que o volume de tráfego e a magnitude das cargas aplicadas pelos veículos variam no tempo e no espaço durante a vida em serviço do pavimento.

O conhecimento dos efeitos cumulativos das solicitações do tráfego é fundamental para o dimensionamento dos pavimentos. Por causa da variabilidade das condições de tráfego, seus efeitos cumulativos são expressos por um denominador comum, os Fatores de Equivalência de Cargas (FEC).

Os FEC permitem a conversão de aplicações de diferentes solicitações em um número equivalente de aplicações da solicitação-padrão, possibilitando o dimensionamento e a previsão do desempenho de pavimentos para o tráfego misto real.

Sempre que possível, a avaliação do tráfego nas rodovias faz-se por contagens volumétricas classificatórias e por pesagens dos veículos parados ou em movimento.

Os veículos rodoviários são dos mais variados tipos, sendo que modificações nas características dos veículos se refletem em modificações nos efeitos gerados sobre os pavimentos. Dessa forma, torna-se necessário classificar o mais detalhadamente possível a frota que utilizará o pavimento a ser projetado, principalmente no que se refere aos caminhões e ônibus.

A classificação dos veículos pode ser feita de forma simplificada:

- Veículos de passeio ou veículos leves: automóveis e utilitários
- Veículos comerciais:
 - o Caminhões leves: 2 eixos simples, ambos com rodas simples
 - o Caminhões médios: 2 eixos simples, rodas traseiras duplas
 - Caminhões pesados: 2 eixos, dianteiro simples e o traseiro em tandem
 - Reboques e semi-reboques: outras combinações
 - Ônibus: equivalente a caminhões leves

No entanto, é preferível que a classificação seja mais detalhada, pois podem ocorrer expressivas variações na carga aplicada ao pavimento entre caminhões de uma determinada subclasse, em função do tipo de veículo. Assim, recomenda-se a adoção do preconizado pelo Manual de Estudos de Tráfego (DNIT, 2006).

Além da classificação dos veículos, também é importante classificar os tipos de eixos, estabelecendo-se as cargas aplicadas por cada tipo de eixo de cada tipo de veículo. A Resolução nº 210 do Conselho Nacional de Trânsito (CONTRAN), de 13 de novembro de 2006, estabelece os limites de peso e dimensões para veículos que transitem por vias terrestres.

Os Fatores de Equivalência de Cargas (FEC) constituem o conceito mais utilizado em todo o mundo no dimensionamento de pavimentos. Esse conceito foi introduzido pela AASHO (atual AASHTO, American Association of Highways and Transportation

Officials) e pelo Bureau of Public Road, atual FHWA (Federal Highways Administration), logo após o final da AASHO Road Test, em 1961. A implementação inicial do conceito de equivalência de cargas deu-se através da utilização das equações de desempenho desenvolvidas pela equipe da AASHO, segundo as quais o desempenho é considerado em termos de variação do Índice de Serventia.

De acordo com o modelo proposto, os FEC podem ser definidos como um número de repetições de uma dada solicitação que é necessário para produzir uma deterioração de mesma magnitude que a produzida por uma aplicação da solicitação padrão.

O eixo padrão rodoviário brasileiro é um eixo simples de rodas duplas que transmite ao pavimento uma carga total de 8,2 toneladas (80 kN). Neste eixo a superfície de contato dos pneus com o pavimento é representada por uma área circular de 10,8 cm de raio e tensão de contato de 5,6 kgf/cm2, conforme mostrado na Figura 3.1.

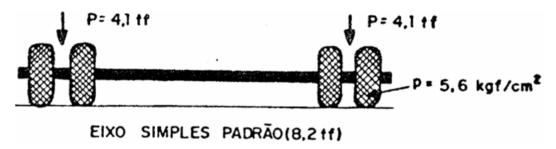


Figura 3.1. Eixo Padrão rodoviário

Os quatro tipos de eixos normalmente utilizados pelos veículos de carga que trafegam nas rodovias brasileiras são representados a seguir, além de ilustrados na Figura 3.2 e na Figura 3.3:

- Eixo simples de rodas simples ESRS;
- Eixo simples de rodas duplas ESRD;
- Eixos tandem duplos de rodas duplas EDRD;
- Eixos tandem triplos de rodas duplas ETRD.

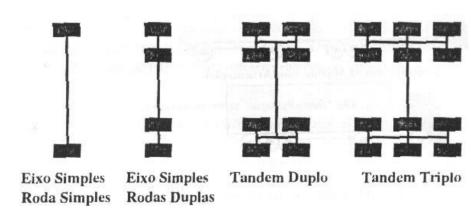


Figura 3.2. Eixos que usualmente trafegam no sistema rodoviário brasileiro

Figura 3.3. Exemplos de Eixos Simples (a) e Tandem duplo (b)

Os fatores de equivalência da AASHTO baseiam-se na perda de serventia e são diferentes dos obtidos pelo USACE, que avaliaram os efeitos do carregamento na deformação permanente (afundamento nas trilhas de roda). As expressões para cálculo dos fatores de equivalência de operações são apresentadas na Tabela 3.4 e na Tabela 3.5, de acordo com os estudos realizados pelo USACE e pela AASHTO, respectivamente.

Tabela 3.4. Expressões matemáticas para obtenção dos fatores de equivalência de operações, para diferentes tipos de eixos (USACE)

Tipos de Eixos	Faixas de Cargas (tf)	Equações (P em tf)
Eixo simples	0-8	$FEO = 2,0782 \times 10^{-4} \times P^{4,0175}$
	≥ 8	$FEO = 1,8320 \times 10^{-6} \times P^{6,2542}$
Eixo tandem duplo	0-11	$FEO = 1,5920 \times 10^{-4} \times P^{3,4720}$
	≥ 11	$FEO = 1,5280 \times 10^{-6} \times P^{5,4840}$
Eixo tandem triplo	0-18	$FEO = 8,0359 \times 10^{-5} \times P^{3,3549}$
	≥ 18	$FEO = 1.3229 \times 10^{-7} \times P^{5.5789}$

Tabela 3.5. Expressões matemáticas para obtenção dos fatores de equivalência de operações, para diferentes tipos de eixos (AASHTO)

Tipos de eixo	Equações (P em tf)
Simples de rodagem simples	$FEO = \left(\frac{P}{7,77}\right)^{4,32}$
Simples de rodagem dupla	$FEO = \left(\frac{P}{8,17}\right)^{4,32}$
Tandem duplo (rodagem dupla)	$FEO = \left(\frac{P}{15,08}\right)^{4,14}$
Tandem triplo (rodagem dupla)	$FEO = \left(\frac{P}{22,95}\right)^{4,22}$
P = Peso bruto total sobre o eixo	

As curvas de correlação entre cargas por eixo e fatores de equivalência de operações utilizadas pelo método de dimensionamento de pavimentos flexíveis do DNIT baseiam nas expressões obtidas pelo USACE (Corpo de Engenheiros do Exército Norteamericano).

Os fatores de equivalência utilizados pelo método do DNIT permitem a conversão de aplicações de diferentes solicitações em um número equivalente de aplicações do eixo

padrão (8,2 tf). Para cada configuração de eixo real há uma conversão para eixo padrão.

Esta conversão é realizada por meio de ábacos, para o caso de eixos simples ou duplos e em tabela, para o caso de eixos triplos. Ilustram-se essas metodologias na Figura 3.4 e na Tabela 3.6.

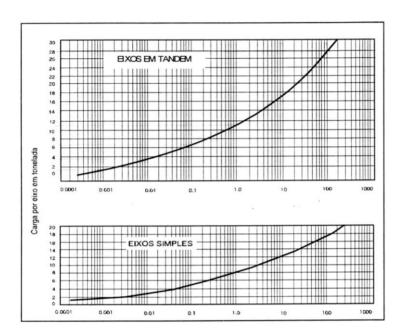


Figura 3.4. Ábacos para determinação de fatores de equivalência de cargas

Tabela 3.6. Fatores de equivalência de cargas

	1 3
Cargas por eixo (t)	Fator de equivalência de cargas
6	0,04
8	0,08
10	0,18
12	0,29
14	0,58
16	0,92
18	1,50
20	2,47
22	5,59
24	6,11
28	14,82
30	20,88
32	40,30
34	46,80
36	59,80
38	91,00
40	130,00

Para efeito de projeto, o tráfego que transitará sobre determinado pavimento ao longo do período de projeto, sua vida útil de serviço, é convertido em um número de

operações/solicitações de um eixo rodoviário padrão. Este número de solicitações é conhecido como número "N". Nesse contexto, o número "N" é calculado pela seguinte expressão:

$$N = 365 \times FR \times FF \times FV \times \sum_{i=1}^{p} VMD_{i}$$

onde:

FF é o Fator de Faixa (vide

Tabela 3.7);

FR é o Fator Climático Regional (vide Tabela 3.8);

VMD; é Volume Médio Diário no ano i;

P é o período de projeto;

FV é o Fator de Veículo relativo ao tráfego da rodovia, calculado pela expressão:

$$FV = \frac{\sum p_i \times FV_i}{100}$$

onde:

p_i é a percentagem de veículos da categoria *i*

 FV_i é o fator de veículo da categoria de veículos i

Tabela 3.7. Fator de Faixa

Faixas por sentido	Porcentagem de veículos comerciais na faixa de projeto
1	100
2	70 a 96
3	50 a 96

Tabela 3.8. Fator Climático Regional (FR)

Climático Regional (FR)

Até 800	0,7
De 800 a 1.500	1,4
Mais de 1.500	1,8

O Fator de Veículo, produto do fator de eixo pelo Fator de Carga, atua na compensação da grande diversidade de veículos e cargas que transitam pela via, transformando estas cargas e veículos diversos em uma quantidade de operações do eixo padrão que seja equivalente em termos de feito destrutivo do pavimento. Ou seja, o Fator de Veículo (FV) transforma um veículo qualquer, com um carregamento qualquer, em uma quantidade de solicitações equivalente do eixo padrão de 8,2 toneladas que causaria o mesmo efeito destrutivo no pavimento.

Como o número de eixos por veículo é bastante variado, utiliza-se o Fator de Eixo (FE) para determinar o número médio de eixos por veículo que circula em uma determinada via.

$$FE = \sum (NE \times \% NE)$$

onde:

NE é o número eixos do veículo

%NE é a porcentagem de determinado tipo de veículo em relação ao total.

Por fim, o Fator Climático Regional (FR) é utilizado para considerar as variações de umidade às quais os materiais constituintes do pavimento estão sujeitos durante as estações do ano, e que influem diretamente na capacidade de suporte dos mesmos. Na Tabela 3.8 são apresentados os fatores climáticos regionais sugeridos para o Brasil, em função da altura média anual de chuva em milímetros.

3.2.1.3 Cálculo do Número "N"

No estudo preliminar o DER/DF sugere-se uma proporção horária para um dia útil e mês não atípico, por porte veicular, transcrito na Tabela 3.9

Tabela 3.9. Proporção do tráfego por tipo de veículo

Horas	Médio	Pesado	Reboque	Semi-reboque	Ônibus
0	0,003428	0,007102	0,007102	0,007102273	0,012678
1	0,002449	0,005682	0,005682	0,005681818	0,007924
2	0,003918	0,007102	0,007102	0,007102273	0,001585
3	0,003918	0,006392	0,006392	0,006392045	0,001585
4	0,003428	0,011719	0,011719	0,01171875	0,012678
5	0,018119	0,03196	0,03196	0,031960227	0,030111

Horas	Médio	Pesado	Reboque	Semi-reboque	Ônibus	
6	0,036729	0,055398	0,055398	0,055397727	0,080824	
7	0,041626	0,068892	0,068892	0,068892045	0,080824	
8	0,084721	0,116832	0,116832	0,116832386	0,085578	
9	0,090108	0,091264	0,091264	0,091264205	0,082409	
10	0,074927	0,071023	0,071023	0,071022727	0,047544	
11	0,073457	0,058239	0,058239	0,058238636	0,041204	
12	0,070029	0,056463	0,056463	0,056463068	0,045959	
13	0,074927	0,060369	0,060369	0,060369318	0,060222	
14	0,031832	0,025568	0,025568	0,025568182	0,022187	
15	0,087659	0,085227	0,085227	0,085227273	0,061807	
16	0,080313	0,063565	0,063565	0,063565341	0,071315	
17	0,060725	0,040128	0,040128	0,040127841	0,057052	
18	0,053869	0,028764	0,028764	0,028764205	0,071315	
19	0,037708	0,020952	0,020952	0,020951705	0,030111	
20	0,026445	0,03125	0,03125	0,03125	0,022187	
21	0,018609	0,019886	0,019886	0,019886364	0,031696	
22	0,013222	0,019886	0,019886	0,019886364	0,023772	
23	0,007835	0,016335	0,016335	0,016335227	0,017433	
Σ	100%	100%	100%	100%	100%	

Essa proporção foi prevista para a DF-003, mas foi igualmente utilizada no Setor Terminal Norte (STN) com o intuito de projetar a contagem realizada em limitado espaço de tempo.

3.2.1.3.1 DF-003 (EPIA)

O estudo preliminar do DER/DF apresenta a expansão dos dados da contagem manual NUCPD/DER para 24 horas, considerando ambos os sentidos da DF-003 (EPIA). Estes dados estão transcritos de maneira resumida na Tabela 3.10.

Tabela 3.10. Volume Médio Diário: DF-003, km 9

	Sentido 1: Norte/Sul												
Médio Pesado Semi-reboque Reboque Ônibus Total													
1.365 1.009 756 277 573													
		Sentido 2: S	ul/Norte										
Médio Pesado Semi-reboque Reboque Ônibus Total													

1.540 1.169	659	275	499	4.142
-------------	-----	-----	-----	-------

Ademais, fundamentado no crescimento geométrico médio anual de 2015 a 2020, têmse as taxas de crescimento descritas na Tabela 3.11.

Tabela 3.11. Taxas de crescimento de veículos pesados

	Tipo de veículo pesado									
Ano	Caminhão	Reboque	Ônibus	Micro- ônibus	Semi- reboque					
Crescimento geométrico (2015 a 2020)	4,72%	4,74%	1,82%	3,18%	4,77%					

Considerando as premissas apresentadas no início da Seção 3.3.3 e os dados supracitados, têm-se na Tabela 3.12 a projeção de tráfego para DF-003 no sentido Norte/Sul. De maneira análoga ao apresentado, na Tabela 3.13 expõe a projeção de tráfego para DF-003 no sentido Sul/Norte.

Tabela 3.12. Projeção de Tráfego para DF-003, Sentido Norte/Sul

Davís da	0	Ônibus	Caminhões	Semi-reboques	Reboques	TOTAL
Período	Caminhonetas	2C	3C	2S3	3D4	TOTAL
2021¹	1.365	573	1.009	756	277	3.980
2022²	1.406	583	1.057	792	290	4.129
2023	1.449	594	1.106	830	304	4.284
2024	1.493	605	1.159	869	318	4.445
2025	1.539	616	1.213	911	333	4.612
2026	1.585	627	1.271	954	349	4.787
2027	1.634	638	1.331	1.000	366	4.968
2028	1.683	650	1.393	1.048	383	5.158
2029	1.735	662	1.459	1.098	401	5.354
2030	1.787	674	1.528	1.150	420	5.559
2031	1.842	686	1.600	1.205	440	5.773
2032	1.898	699	1.676	1.262	461	5.995

¹ Ano de projeto;

² Ano de licitação e obras.

Tabela 3.13. Projeção de Tráfego para DF-003, Sentido Sul/Norte

Período	Caminhonetas	Ônibus	Caminhões	Semi-reboques	Reboques	TOTAL	
renodo	Callillillonetas	2C	3C	2S3	3D4	IOIAL	
2021¹	1.540	499	1.169	659	275	4.142	
2022²	1.587	508	1.224	690	288	4.298	
2023	1.635	517	1.282	723	302	4.459	
2024	1.685	527	1.342	758	316	4.628	
2025	1.736	536	1.406	794	331	4.803	
2026	1.789	546	1.472	832	347	4.986	
2027	1.843	556	1.542	872	363	5.175	
2028	1.899	566	1.614	913	380	5.373	
2029	1.957	576	1.691	957	398	5.579	
2030	2.016	587	1.770	1.002	417	5.793	
2031	2.078	598	1.854	1.050	437	6.016	
2032	2.141	609	1.942	1.100	458	6.249	

¹ Ano de projeto;

Na Tabela 3.14 e Tabela 3.15 apresentam-se os valores das cargas por eixo, cálculo dos fatores de equivalência para cada eixo e o fator de equivalência total para cada veículo admitindo a tolerância de 12,5% no peso por eixo. Esta tolerância foi reestabelecida pela Lei 14.229, de 2021, que aumentou de 10% para 12,5% a tolerância para o excesso de peso por eixo ônibus de passageiros e de caminhões de carga sem aplicação de penalidades. De acordo com a Lei, veículos de peso bruto total igual ou inferior a 50 t devem ser fiscalizados apenas quanto aos limites de peso bruto total ou de peso bruto total combinado (caminhão mais o reboque), cuja tolerância fixada pela lei é de 5%.

² Ano de licitação e obras.

Tabela 3.14. Valores de carga por eixo – Fatores de Veículo USACE

	Tabela 3.14. Valores de carga por elxo — Fatores de Verculo OSACE																			
									VE	ÍCULO	S VAZIO	os								
Configuraci			Conjun	to de E	ixos		Carga por Eixo (t)							Fator de Equivalência						
Configuraçã	10	ESRS	ESRD	ETD	ETT	Total	ESRS	ESRS ESRD ETD				ETT	Total	ESRS	ESRD	ETD			ETT	FVi
Ônibus	2C	1	1			2	5,40	7,00					12,40	0,1820	0,5163					0,6983
Caminhões	3C	1		1		2	5,40		11,90				17,30	0,1820		1,2090				1,3910
Semi- reboques	2S3	1	1		1	3	5,40	7,00				17,85	30,25	0,1820					1,2710	1,4530
Reboques	3D4	1		3		4	5,40		11,90	11,90	11,90		41,10	0,1820		1,2090	1,2090	1,2090		3,8090
	•				VEÍO	CULOS	CARRE	GADOS	(LEI DA	BALA	NÇA) -	TOLER	ÂNCIA	DE 12,5%	% POR EI	хо				
0			Conjun	to de E	ixos				Carga	por Eix	(o (t)			Fator de Equivalência						
Configuraçã	10	ESRS	ESRD	ETD	ETT	Total	ESRS	ESRD		ETD		ETT	Total	ESRS	ESRD		ETD		ETT	FVi
Ônibus	2C	1	1			2	6,75	11,25					18,00	0,4461	6,8714					7,3175
Caminhões	3C	1		1		2	6,75		19,13				25,88	0,4461		16,3089				16,7550
Semi- reboques	2S3	1	1		1	3	6,75	11,25				28,69	46,69	0,4461					17,9411	18,3872
Reboques	3D4	1		3		4	6,75		19,13	19,13	19,13		64,13	0,4461		16,3089	16,3089	16,3089		49,3729

Tabela 3.15. Valores de carga por eixo – Fatores de Veículo AASHTO

				iab	oia o.	10. 74	10100 0	o oarge	•				orodio	AASHI						
									VE	ÍCULOS	SVAZIC	os								
Configurac	~~		Conjun	to de E	Eixos		Carga por Eixo (t)							Fator de Equivalência						
Configuraç	ao	ESRS	ESRD	ETD	ETT	Total	ESRS ESRD ETD ETT Total E				ESRS	ESRD	SRD ETD			ETT	FVi			
Ônibus	2C	1	1			2	5,40	7,00					12,40	0,2076	0,5129					0,7205
Caminhões	3C	1		1		2	5,40		11,90				17,30	0,2076		0,3751				0,5828
Semi- reboques	2S3	1	1		1	3	5,40	7,00				17,85	30,25	0,2076					0,3463	0,5539
Reboques	3D4	1		3		4	5,40		11,90	11,90	11,90		41,10	0,2076		0,3751	0,3751	0,3751		1,3330
					VEÍC	ULOS	CARREC	GADOS (LEI DA	BALA	NÇA) - 1	TOLER/	ÂNCIA	DE 12,5%	POR EI	хо				
0	~ _		Conjun	to de E	ixos				Carga	por Eix	(o (t)			Fator de Equivalência						
Configuraç	ao	ESRS	ESRD	ETD	ETT	Total	ESRS	ESRD		ETD		ETT	Total	ESRS	ESRD		ETD		ETT	FVi
Ônibus	2C	1	1			2	6,75	11,25					18,00	0,5445	3,9827					4,5272
Caminhões	3C	1		1		2	6,75		19,13				25,88	0,5445		2,6745				3,2190
Semi- reboques	2\$3	1	1		1	3	6,75	11,25				28,69	46,69	0,5445					2,5642	3,1087
Reboques	3D4	1		3		4	6,75		19,13	19,13	19,13		64,13	0,5445		2,6745	2,6745	2,6745		8,5681

Em continuidade ao exposto, na Tabela 3.16 apresentam-se os fatores de veículos adotados para o projeto.

Tabela 3.16. Cálculo dos Fatores de Veículo - FV

		Rodovia: EPIA - Sentido Norte/Sul												
Rodovia:	EPIA	- Senti	do Nort	e/Sul										
Veículos-tipo		VMD	Fato	r de Veículo USACE	Fato	de Veículo AASHTO								
veiculos-tipo		VIVID	FVi	(VMD*FV)/∑VMD	FVi	(VMD*FV)/∑VMD								
Ônibus	2C	573	5,33	1,086	3,39	0,689								
Caminhões	3C	1.009	12,15	4,356	2,35	0,843								
Semi-reboques	2S3	954	13,31	4,514	2,34	0,795								
Reboques	3D3	277	35,70	3,515	6,40	0,630								
Total		2.813		FVusace = 13,471	FVaashto = 2,957									
Rodovia:	EPIA	- Senti	do Sul/N	Norte										
Vaíoulas tina		VMD	Fato	r de Veículo USACE	Fato	r de Veículo AASHTO								
Veículos-tipo		VIVID	FVi	(VMD*FV)/∑VMD	FVi	(VMD*FV)/∑VMD								
Ônibus	2C	499	5,33	0,959	3,39	0,609								
Caminhões	3C	1.169	12,15	5,117	2,35	0,990								
Semi-reboques	2S3	832	13,31	3,989	2,34	0,702								
Reboques	3D3	275	35,70	3,538	6,40	0,634								
Total	_	2.775		FVusace = 13,603		FVaashto = 2,935								

Por fim, expõe-se na sequência uma síntese do estudo de tráfego para cada sentido, destacando o Número "N" obtido.

Tabela 3.17. Cálculo do Número "N" - Sentido Norte/Sul

		Volumes d	e Tráfego (VMDAT)				Valores do	Número "N"		
Ano		Veícul	os-tipo		T-4-1	U	SACE	AA	ASHTO	Observações
	Moto	Passeio	Caminhões e Ônibus	Carga	Total	Ano	Acumulado	Ano	Acumulado	
2023	0	1.449	1.701	1.134	4.284	4,88E+06	4,88E+06	1,07E+06	1,07E+06	1º ano
2024	0	1.493	1.764	1.188	4.445	5,08E+06	9,96E+06	1,11E+06	2,19E+06	
2025	0	1.539	1.829	1.244	4.612	5,29E+06	1,52E+07	1,16E+06	3,35E+06	
2026	0	1.585	1.898	1.304	4.787	5,51E+06	2,08E+07	1,21E+06	4,56E+06	
2027	0	1.634	1.969	1.366	4.968	5,74E+06	2,65E+07	1,26E+06	5,82E+06	5º ano
2028	0	1.683	2.044	1.431	5.158	5,98E+06	3,25E+07	1,31E+06	7,13E+06	
2029	0	1.735	2.121	1.499	5.354	6,23E+06	3,87E+07	1,37E+06	8,50E+06	
2030	0	1.787	2.202	1.570	5.559	6,49E+06	4,52E+07	1,43E+06	9,92E+06	
2031	0	1.842	2.287	1.645	5.773	6,77E+06	5,20E+07	1,49E+06	1,14E+07	
2032	0	1.898	2.375	1.723	5.995	7,05E+06	5,90E+07	1,55E+06	1,30E+07	10º ano
		Composição Percentual de Tr	áfego		Parâmet	ros adotados r	o cálculo do núm	ero de operaçã	ies do eixo padrã	o de 8,2t
Moto	Passeio	Caminhões e Ônibus	Carga		Fator	es de Veículos	- FV	Fator	climático	Fator de pista
0,00			26%	FVu	sace	FV	aashto		FR	FP
	Taxas de Crescimento de Tráfego				,47		2,96		1,00	0,35
Moto	Passeio	Caminhões e Ônibus	Carretas			Ano inicial	lúmero "N"		2023	
3,04%	3,04%	4,72%	4,74%		Perío	odo de projeto	para o cálculo do	número "N" (a	nos)	10

Tabela 3.18. Cálculo do Número "N" - Sentido Sul/Norte

Volumes de Tráfego (VMDAT)										
Ano		Veículos-tipo				USACE		AASHTO		Observações
	Moto	Passeio	Caminhões e Ônibus	Carga	Total	Ano	Acumulado	Ano	Acumulado	
2023	0	1.635	1.799	1.025	4.459	4,91E+06	4,91E+06	1,06E+06	1,06E+06	1º ano
2024	0	1.685	1.869	1.074	4.628	5,11E+06	1,00E+07	1,10E+06	2,16E+06	
2025	0	1.736	1.942	1.125	4.803	5,33E+06	1,54E+07	1,15E+06	3,31E+06	
2026	0	1.789	2.018	1.179	4.986	5,56E+06	2,09E+07	1,20E+06	4,51E+06	
2027	0	1.843	2.098	1.235	5.175	5,79E+06	2,67E+07	1,25E+06	5,76E+06	5º ano
2028	0	1.899	2.181	1.293	5.373	6,04E+06	3,27E+07	1,30E+06	7,06E+06	
2029	0	1.957	2.267	1.355	5.579	6,29E+06	3,90E+07	1,36E+06	8,42E+06	
2030	0	2.016	2.357	1.420	5.793	6,56E+06	4,56E+07	1,42E+06	9,84E+06	
2031	0	2.078	2.452	1.487	6.016	6,84E+06	5,24E+07	1,48E+06	1,13E+07	
2032	0	2.141	2.550	1.558	6.249	7,14E+06	5,96E+07	1,54E+06	1,29E+07	10º ano
	•	Composição Percentual de Tra	áfego		Parâmet	ros adotados r	o cálculo do núm	ero de operaçõ	es do eixo padrão	o de 8,2t
Moto	Passeio	Caminhões e Ônibus	Carga		Fator	es de Veículos	- FV	Fator	climático	Fator de pista
0,00	37%	40%	23%	FVus	FVusace FVaashto			ce FVaashto FR		FP
		Taxas de Crescimento de Trá	fego	13,	,60		2,94		1,00	0,35
Moto	Passeio	Caminhões e Ônibus	Carretas			Ano inicial	para cálculo do N	úmero "N"		2023
3,04%	3,04%	4,72%	4,74%	Período de projeto para o cálculo do número "N" (anos)			10			

3.2.1.3.2 Setor Terminal Norte (STN)

Fundamentado no arcabouço estatístico apresentado no início da Seção 3.3.3 e nas premissas citadas na Seção 3.1, a projeção de tráfego da STN é exposta na Tabela 3.19

Tabela 3.19. Projeção de Tráfego para STN

				, ,	5 1			
Período	Carros de	Caminhonetas	Ônibus	Caminhões	Semi-reboques	Reboques	Motos	TOTAL
renouo	Passeio	Camminonetas	2C	3C	2S 3	3D4	IVIOLOS	TOTAL
2021¹	13.537	270	1.014	153	23	2	866	15.865
2022²	13.949	278	1.032	160	24	2	892	16.338
2023	14.373	287	1.051	168	25	2	919	16.825
2024	14.809	295	1.070	176	26	2	947	17.327
2025	15.260	304	1.090	184	28	2	976	17.844
2026	15.724	314	1.110	193	29	3	1.006	18.377
2027	16.202	323	1.130	202	30	3	1.036	18.926
2028	16.694	333	1.150	211	32	3	1.068	19.491
2029	17.202	343	1.171	221	33	3	1.100	20.074
2030	17.725	354	1.193	232	35	3	1.134	20.674
2031	18.263	364	1.214	243	37	3	1.168	21.293
2032	18.819	375	1.237	254	38	3	1.204	21.930

¹ Ano de projeto;

Sabendo que os veículos-tipo são os mesmos que trafegam na EPIA, os fatores de veículo podem ser analisados na Tabela 3.14 e Tabela 3.15. Assim, na Tabela 3.16 apresentam-se os fatores de veículos adotados para o projeto.

Tabela 3.20. Cálculo dos Fatores de Veículo - FV

Vaíoulas tina		VMD	Fator de Veículo USACE			or de Veículo AASHTO
Veículos-tipo		VIVID	FVi	(VMD*FV)/∑VMD	FVi	(VMD*FV)/∑VMD
Ônibus	2C	1.014	5,33	4,513	3,39	2,865
Caminhões	3C	153	12,15	1,551	2,35	0,300
Semi-reboques	2S3	29	13,31	0,322	2,34	0,057
Reboques	3D3	2	35,70	0,060	6,40	0,011
Total		1.198		FVusace = 6,446		FVaashto = 3,233

Por fim, expõe-se na sequência uma síntese do estudo de tráfego, destacando o Número "N".

² Ano de licitação e obras.

Tabela 3.21. Cálculo do Número "N" – STN

Volumes de Tráfego (VMDAT)					Valores do Número "N"					
Ano		Veículo	os-tipo		T-1-1	U	USACE		AASHTO	
	Moto	Passeio	Caminhões e Ônibus	Carga	Total	Ano	Acumulado	Ano	Acumulado	1
2023	1.006	287	1.219	27	2.539	1,03E+06	1,03E+06	5,15E+05	5,15E+05	1º ano
2024	1.036	295	1.246	29	2.607	1,05E+06	2,08E+06	5,27E+05	1,04E+06	
2025	1.068	304	1.274	30	2.676	1,07E+06	3,15E+06	5,39E+05	1,58E+06	
2026	1.100	314	1.302	32	2.748	1,10E+06	4,25E+06	5,51E+05	2,13E+06	
2027	1.134	323	1.332	33	2.822	1,12E+06	5,37E+06	5,64E+05	2,69E+06	5º ano
2028	1.168	333	1.362	35	2.898	1,15E+06	6,52E+06	5,77E+05	3,27E+06	
2029	1.204	343	1.393	36	2.976	1,18E+06	7,70E+06	5,90E+05	3,86E+06	
2030	1.240	354	1.424	38	3.056	1,20E+06	8,90E+06	6,04E+05	4,47E+06	
2031	1.278	364	1.457	40	3.139	1,23E+06	1,01E+07	6,18E+05	5,08E+06	
2032	1.317	375	1.491	42	3.225	1,26E+06	1,14E+07	6,33E+05	5,72E+06	10º ano
	•	Composição Percentual de Tra	áfego		Parâmeti	os adotados n	o cálculo do núm	ero de operaçõ	es do eixo padrão	o de 8,2t
Moto	Passeio	Caminhões e Ônibus	Carga		Fatore	es de Veículos	- FV	Fator	climático	Fator de pista
0,40	11%	48%	1%	FVu	FVusace FVaashto				FR	FP
	•	Taxas de Crescimento de Trá	fego	6,45		;	3,23		1,00	0,35
Moto	Passeio	Caminhões e Ônibus	Carretas	Ano inicial para cálculo do Número "N"			2023			
3,04%	3,04%	4,72%	4,74%		Período de projeto para o cálculo do número "N" (anos)				10	

3.3 Dimensionamento Prévio - Manual DNIT

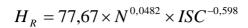
Nesta seção será dissertado sobre o dimensionamento do pavimento de acordo com o método do Engº Murillo Lopes de Souza, preconizado no Manual de Projeto de Pavimentos do DNIT. Este método é realizado para o dimensionamento preliminar do pavimento.

O dimensionamento do pavimento asfáltico visa assegurar que a repetição da passagem dos eixos dos veículos não irá causar o trincamento excessivo da camada de revestimento por fadiga dentro do período de vida do projeto e, também, garantir que as espessuras das camadas de sua estrutura, bem como suas características, sejam capazes de minimizar os efeitos do afundamento da trilha de roda (acúmulo excessivo de deformação permanente), considerando a compatibilidade entre as deformabilidades dos materiais.

Diversos fatores incidem sobre os danos nas estruturas dos pavimentos tais como: o volume de tráfego, o peso e pressão das rodas do carregamento, a variação lateral da passagem dos veículos, a qualidade dos materiais, o efeito do clima, principalmente da temperatura e da umidade, etc. Como não é possível possuir o conhecimento exato destes fatores, o dimensionamento é realizado com os parâmetros médios ou característicos, com um grau de risco estatístico adotado como aceitável.

De acordo com o nível de tráfego, o método recomenda as espessuras mínimas de revestimento betuminoso, conforme mostrado na Tabela 3.22.

NEspessura Mínima do Revestimento Betuminoso $N \le 10^6$ Tratamentos superficiais betuminosos $10^6 < N \le 5 \times 10^6$ Revestimentos betuminosos com 5,0 cm de espessura $5 \times 10^6 < N \le 10^7$ Concreto betuminoso com 7,5 cm de espessura $10^7 < N \le 5 \times 10^7$ Concreto betuminoso com 10,0 cm de espessura $N > 5 \times 10^7$ Concreto betuminoso com 12,5 cm de espessura


Tabela 3.22. Espessura mínima de revestimento

Assim, considerando as informações preconizadas pelo DNIT, têm-se a espessura mínima do revestimento de 12,5 cm.

O gráfico apresentado no método, reproduzido na Figura 3.5, permite o cálculo da espessura total do pavimento em função de N e do ISC do subleito. A espessura total obtida do gráfico é expressa em termos de material granular, ou seja, de um material que apresente coeficiente de equivalência estrutural igual a um (k = 1,0). Alternativamente ao gráfico, pode ser utilizada a equação abaixo:

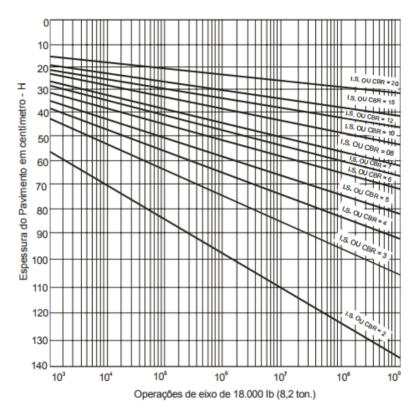


Figura 3.5. Ábaco para o cálculo da espessura do pavimento

Deve-se ressaltar ainda que as espessuras máximas e mínimas de compactação das camadas granulares são de 20cm e 10cm, respectivamente. Com relação a espessura construtiva mínima para estas camadas, o valor admissível é de 15cm.

Na Figura 3.6 apresenta-se a simbologia utilizada na designação das diferentes camadas do pavimento.

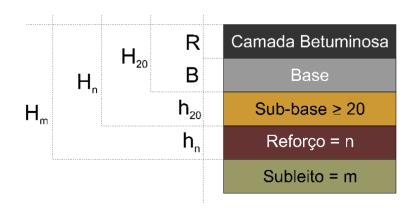


Figura 3.6. Nomenclaturas designadas para as camadas do pavimento

onde:

Hm é a espessura total necessária para proteger um material com ISC = m

Hn é a espessura da camada de pavimento com ISC = n

H20 é a espessura de pavimento sobre a sub-base

h20 é a espessura da sub-base

B é a espessura da base

R é a espessura do revestimento.

Determinadas as espessuras Hm, Hn, H20 e R, as espessuras da base, sub-base e reforço são obtidas pela resolução sucessiva das seguintes inequações:

$$\begin{aligned} R \times K_R + B \times K_B &\geq H_{20} \\ R \times K_R + B \times K_B + H_{20} \times K_S &\geq H_n \\ R \times K_R + B \times K_B + H_{20} \times K_S + H_n \times K_{REF} &\geq H_m \end{aligned}$$

Os termos K_R e K_B são os coeficientes de equivalência estrutural, obtidos a partir da Tabela 3.23. Os coeficientes da sub-base, K_{SB} , e do reforço do subleito, K_{REF} , são obtidos pelas expressões:

$$K_{SB} = \sqrt[3]{\frac{CBR_{SB}}{3CBR_{SL}}} \le 1$$
 e $K_{REF} = \sqrt[3]{\frac{CBR_{REF}}{3CBR_{SL}}} \le 1$

Tabela 3.23. Coeficientes de equivalência estrutural – IP-05/PMS

CAMADA DO PAVIMENTO	COEFICIENTE ESTRUTURAL (K)
Base ou Revestimento de Concreto Asfáltico	2,00
Base ou Revestimento de Concreto Magro/Compactado com Rolo	2,00
Base ou Revestimento de Pré-Misturado a Quente, de Graduação Densa / BINDER	1,80
Base ou Revestimento de Pré-Misturado a Frio, de Graduação Densa	1,40
Base ou Revestimento Asfáltico por Penetração	1,20
Paralelepípedos	1,00
Base de Brita Graduada Simples, Macadame Hidráulico e Estabilizadas Granulometricamente	1,00
Sub-bases Granulares ou Estabilizadas com Aditivos	≤ 1,00
Reforço do Subleito	≤ 1,00
Base de Solo-Cimento ou BGTC, com resistência á compressão aos 7 dias, superior a 4,5 MPa	1,70
Base de BGTC, com resistência à compressão aos 7 dias, entre 2,8 e 4,5 MPa	1,40
Base de Solo-Cimento, com resistência à compressão aos 7 dias, menor que 2,8 e maior ou igual a 2,1 MPa	1,20
Base de Solo melhorado com Cimento, com resistência à compressão aos 7 dias, menor que 2,1 MPa	1,00

Os dados relativos ao projeto são aqueles apresentados em tabelas e no ábaco da Figura 3.5, além das inequações acima especificadas e os valores dos coeficientes de equivalência da Tabela 3.23. Ao aplicar esses fatores às condições locais, têm-se as estruturas de pavimento preliminares apresentadas na Tabela 3.24.

Tabela 3.24. Resultado obtido no dimensionamento, em centímetros

Tráfago (NI)	R		Н		В		h ₂₀	
Tráfego (N)	Mínimo	Adotado	20	n	Mínimo	Adotado	Mínimo	Adotado
5,96 x 10 ⁷	12,5	12,5	30,69	70,31	7,1	17	29,7	30

Assim, na Tabela 3.25 apresentam-se as espessuras preliminarmente propostas para os segmentos em estudo.

Tabela 3.25. Proposta de estrutura de pavimento

Camada	Espessura (cm)	Material*
CBUQ – Capa de Rolamento – Faixa "C"	5,5	CBUQ – Capa de Rolamento
Pintura de ligação	-	Emulsão asfáltica: RR-2C
CBUQ – Binder – Faixa "B"	7,0	CBUQ -Binder
Imprimação	-	Asfalto Diluído: CM-30
Base	17	Brita Graduada Simples
Sub-base	30	Solo local com adição de 4% de cal
Subleito	-	Solo local

Ressalta-se que a estrutura apresentada deverá ser verificada, por meio de análise mecanicista do pavimento, que ditará a solução definitiva. Portanto, limita-se, até o presente momento, à obtenção de uma estrutura preliminar.

3.4 Dimensionamento Definitivo – Análise Mecanística

A Instrução de Projeto "IP-DE-P00/001 - Projeto de Pavimentação", do DER-SP, de janeiro de 2006, preconiza: "A critério da fiscalização, pode ser solicitada a verificação mecanicista da estrutura de pavimento dimensionada pelos métodos do DER/SP e do DNER através do emprego de programa computacional. Na utilização de programas computacionais para verificação mecanicista, devem ser fornecidas a descrição sucinta do programa computacional, as hipóteses de cálculo utilizadas e simplificações adotadas, dados de entrada e resultados obtidos." (grifo nosso)

Os critérios mecanísticos de estudo de pavimentos utilizam-se da teoria das camadas elásticas para o cálculo dos deslocamentos, das tensões e das deformações nas estruturas simuladas. Como ferramenta para realizar este projeto fez-se uso do programa do ELSYM5 - Elastic Layered System, que através do método das diferenças finitas, permite o cálculo dos parâmetros requeridos pela Instrução de Projeto do DER-SP, em qualquer ponto da estrutura do pavimento.

Com relação às hipóteses de cálculo utilizadas e as simplificações adotadas, estas estão implícitas no modelo constitutivo atribuído como padrão no programa ELSYM5 e nos dados de entrada. Deve-se especialmente citar a adoção dos coeficientes "K" e "n", para expor que estes estão em consonância com as especificações técnicas requeridas no projeto. Dessa forma, com base nas referências bibliográficas propostas pela norma do DER-SP, adotaram-se as fontes apresentadas na Tabela 3.26 e na Tabela 3.27.

Tabela 3.26. Modelos de fadiga para misturas asfálticas

Fonte	Ano	К	N
Pinto & Preussler (CAP 50/70)	1980	2,85 x 10 ⁻⁷	3,69

Tabela 3.27. Modelos de fadiga para ruptura do subleito

Fonte	Ano	K	N
Dormon & Metcalf	1965	6,069 x 10 ⁻¹⁰	4,762

3.4.1 Parâmetros de Entrada

Os parâmetros de entrada do programa são dados fundamentais para obtenção de um resultado condizente com a realidade. Com relação a este projeto, na Tabela 3.28 apresentam-se os dados relacionados à estrutura do pavimento.

Tabela 3.28. Estrutura do pavimento e valores usuais de Módulo de Resiliência e Poisson

		Módu					
Camada	Tipo	Estimativa em MPa	Fonte	Estimativa em kgf/cm²	Poisson	CBR (%)	
	Concreto Asfáltico	3.000 < E < 5.000	IP-08/2004	50,000	0.20		
Mistura	(1)	2.000 < E < 5.000	IP-DE-P00/001	50.000	0,30	-	
Betuminosa	Dia day (2)	1.400 < E < 1.800	IP-08/2004	20.500			
	Binder ⁽²⁾	2.000 < E < 3.000	IP-DE-P00/001	20.500	0,30	-	
	Brita Graduada Simples ⁽²⁾	100 < E _B < 500	IP-08/2004	0.000	0,35	400	
Base		150 < E _B < 300	IP-DE-P00/001	2.600		100	
Sub-base	Solo local com 4%	$E_{REF} = 18.0 (CBR_{SB})^{0.64} \times \sqrt[3]{\frac{3CBR_{SL}}{CBR_{SB}}}$	IP-08/2004	1.680	0,20	20	
Sub-base	de cal	150 < E _B < 300	IP-DE-P00/001	1.000	0,20	20	
	No Latarita	E _{SL} = 18.0 (CBR) ^{0,64}	IP-08/2004	500	0.40	5.0	
0.11.%	Não Laterítico	25 < E _B < 75	IP-DE-P00/001	500	0,40	5,0	
Subleito	Lataritica	E _{SL} = 22,0 (CBR) ^{0,8}	IP-08/2004	050	0.40	5.0	
	Laterítico	25 < E _B < 75	IP-DE-P00/001	650	0,40	5,0	

⁽¹⁾ Adotou-se o limite superior, considerando relevante o emprego de material especial como, por exemplo, o emprego de asfalto-polímero, na camada de rolamento, em face da severidade das solicitações provenientes do tráfego;

Com relação aos dados gerais do carreamento, estes estão sintetizados na Tabela 3.29.

⁽²⁾ Adotou-se como referência a média entre os valores intermediários da IP-08/2004 e IP-DE-P00/001;

Tabela 3.29. Dados gerais do carregamento imposto ao pavimento

Propriedade	Magnitude
Pressão de contato pneu/pavimento	5,6 kgf/cm ^{2 (1)}
Raio da área de contato pneu/pavimento	10,8 cm
Carga por roda	2.050 kgf
Afastamento entre pneus, por roda	28,8 cm
Ponto médio entre pneus	14,4 cm

⁽¹⁾ Na simulação este dado foi atribuído como sendo igual à zero, pois este valor já é considerado pelas configurações padrões.

Para verificação do deslocamento vertical na superfície do pavimento (d_0) , deformação específica horizontal de tração na fibra inferior da camada de revestimento (ϵ_l) e deformação específica vertical de compressão no topo do subleito (ϵ_V) , utilizaram-se os dados apresentados na Tabela 3.30 e exemplificados na Figura 3.7.

Tabela 3.30. Pontos de interesse da análise mecanística

Propriedade	Parâmetro	Localização
Deslocamento vertical na superfície do pavimento (d ₀)	Uz (cm)	Infinitesimal abaixo da carga (0,01 cm)
Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ɛt)	Maior valor entre εχχ e εγγ	Infinitesimal acima da interface binder-base
Deformação específica vertical de compressão no topo do subleito (ε _V)	8 _{ZZ}	Infinitesimal abaixo da sub-base

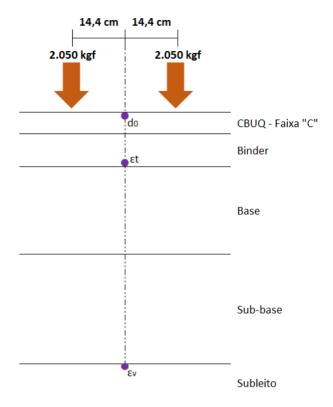


Figura 3.7. Exemplificação dos pontos de obtenção dos dados de interesse

3.4.2 Resultados Obtidos

Os resultados da análise mecanicista podem ser divididos em:

- Verificação do deslocamento vertical na superfície do pavimento (d₀);
- Verificação da deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε_t); e
- Verificação da deformação específica vertical de compressão no topo do subleito (ε_V).

Com base nos parâmetros de entrada, obtiveram-se os valores apresentados na Tabela 3.31.

Tabela 3.31. Parâmetros obtidos com a utilização do programa ELSYM5

Estrutura Proposta 1: Revestimento 12,5 cm / Base 17 cm / Subbase 30 cm	
Propriedade	Magnitude
Deslocamento vertical na superfície do pavimento (d ₀)	51,1 x 10 ⁻² mm
Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t)	2,42 x 10 ⁻⁴ cm/cm
Deformação específica vertical de compressão no topo do subleito (ϵ_V)	3,66 x 10 ⁻⁴ cm/cm
Estrutura Proposta 2 (Subleito Laterítico): Revestimento 15 cm / Base 15 cm / Subbase 30 cm	
Propriedade	Magnitude
Deslocamento vertical na superfície do pavimento (d ₀)	38,9 x 10 ⁻² mm
Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t)	1,44 x 10 ⁻⁴ cm/cm
Deformação específica vertical de compressão no topo do subleito (ϵ_V)	2,69 x 10 ⁻⁴ cm/cm
Validação da Estrutura Proposta 2 (Subleito Laterítico Revestimento 14 cm / Base 15 cm / Subbase 30 cm	
Propriedade	Magnitude
Deslocamento vertical na superfície do pavimento (d ₀)	40.4 x 40-2 mm
besideamento vertical ha supernole do pavimento (d0)	40,4 x 10 ⁻² mm
Desiocamento vertical na superficie do pavimento (do) Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t)	1,54 x 10 ⁻⁴ cm/cm
Deformação específica horizontal de tração na fibra inferior da camada	· · · · · · · · · · · · · · · · · · ·
Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t)	1,54 x 10 ⁻⁴ cm/cm 2,86 x 10 ⁻⁴ cm/cm ST-06):
Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t) Deformação específica vertical de compressão no topo do subleito (ε _V) Estrutura Proposta 3 (Subleito não Laterítico – Região do	1,54 x 10 ⁻⁴ cm/cm 2,86 x 10 ⁻⁴ cm/cm ST-06):
Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t) Deformação específica vertical de compressão no topo do subleito (ε _V) Estrutura Proposta 3 (Subleito não Laterítico – Região do Revestimento 16 cm / Base 19 cm / Subbase 30 cm	1,54 x 10 ⁻⁴ cm/cm 2,86 x 10 ⁻⁴ cm/cm ST-06):
Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t) Deformação específica vertical de compressão no topo do subleito (ε _ν) Estrutura Proposta 3 (Subleito não Laterítico – Região do Revestimento 16 cm / Base 19 cm / Subbase 30 cm	1,54 x 10 ⁻⁴ cm/cm 2,86 x 10 ⁻⁴ cm/cm ST-06): Magnitude
Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ɛt) Deformação específica vertical de compressão no topo do subleito (ɛv) Estrutura Proposta 3 (Subleito não Laterítico – Região do Revestimento 16 cm / Base 19 cm / Subbase 30 cm Propriedade Deslocamento vertical na superfície do pavimento (do) Deformação específica horizontal de tração na fibra inferior da camada	1,54 x 10 ⁻⁴ cm/cm 2,86 x 10 ⁻⁴ cm/cm ST-06): Magnitude 42,3 x 10 ⁻² mm
Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t) Deformação específica vertical de compressão no topo do subleito (ε _V) Estrutura Proposta 3 (Subleito não Laterítico – Região do Revestimento 16 cm / Base 19 cm / Subbase 30 cm Propriedade Deslocamento vertical na superfície do pavimento (d₀) Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t)	1,54 x 10 ⁻⁴ cm/cm 2,86 x 10 ⁻⁴ cm/cm ST-06): Magnitude 42,3 x 10 ⁻² mm 1,34 x 10 ⁻⁴ cm/cm 2,69 x 10 ⁻⁴ cm/cm
Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t) Deformação específica vertical de compressão no topo do subleito (ε _V) Estrutura Proposta 3 (Subleito não Laterítico – Região do Revestimento 16 cm / Base 19 cm / Subbase 30 cm Propriedade Deslocamento vertical na superfície do pavimento (d₀) Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t) Deformação específica vertical de compressão no topo do subleito (ε _V) Validação da Estrutura Proposta 3 (Subleito não Laterítico – Regiante de compressão de laterítico – Regiante de la compressão de la compressão de laterítico – Regiante de la compressão de la compressão de laterítico – Regiante de la compressão de laterítico – Regiante de la compressão de la compres	1,54 x 10 ⁻⁴ cm/cm 2,86 x 10 ⁻⁴ cm/cm ST-06): Magnitude 42,3 x 10 ⁻² mm 1,34 x 10 ⁻⁴ cm/cm 2,69 x 10 ⁻⁴ cm/cm
Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t) Deformação específica vertical de compressão no topo do subleito (ε _V) Estrutura Proposta 3 (Subleito não Laterítico – Região do Revestimento 16 cm / Base 19 cm / Subbase 30 cm Propriedade Deslocamento vertical na superfície do pavimento (d₀) Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t) Deformação específica vertical de compressão no topo do subleito (ε _V) Validação da Estrutura Proposta 3 (Subleito não Laterítico – Registrativa de Compressão no topo do subleito (ε _V) Propriedade Deslocamento vertical na superfície do pavimento (d₀)	1,54 x 10 ⁻⁴ cm/cm 2,86 x 10 ⁻⁴ cm/cm ST-06): Magnitude 42,3 x 10 ⁻² mm 1,34 x 10 ⁻⁴ cm/cm 2,69 x 10 ⁻⁴ cm/cm
Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t) Deformação específica vertical de compressão no topo do subleito (ε _V) Estrutura Proposta 3 (Subleito não Laterítico – Região do Revestimento 16 cm / Base 19 cm / Subbase 30 cm Propriedade Deslocamento vertical na superfície do pavimento (d₀) Deformação específica horizontal de tração na fibra inferior da camada de revestimento (ε _t) Deformação específica vertical de compressão no topo do subleito (ε _V) Validação da Estrutura Proposta 3 (Subleito não Laterítico – Regia Revestimento 16 cm / Base 18 cm / Subbase 30 cm	1,54 x 10 ⁻⁴ cm/cm 2,86 x 10 ⁻⁴ cm/cm ST-06): Magnitude 42,3 x 10 ⁻² mm 1,34 x 10 ⁻⁴ cm/cm 2,69 x 10 ⁻⁴ cm/cm ão do ST-06) (2):

⁽¹⁾ Considerando uma camada construtiva mínima de 15 cm a alteração mínima possível, para validar a estrutura proposta, foi a redução de 1 cm no revestimento;

⁽²⁾ Considerando uma camada construtiva mínima de 15 cm a alteração mínima possível, para validar a estrutura proposta, foi a redução de 1 cm na base.

3.4.2.1 Deslocamento na superfície do pavimento

Para o deslocamento vertical na superfície do pavimento (d_0) , têm-se a seguinte equação:

$$\log D_{adm} = k - n.\log N$$

Na Tabela 3.32 demonstram-se que as constantes "K" e "n" são definidas de forma distintas pelos procedimentos DNER-PRO 011/79 e DNER-PRO 269-94.

Tabela 3.32. Deslocamento vertical recuperável em função do Número "N" – Estrutura sem reforço do subleito

Equação	Procedimento	K	n				
1	DNER-PRO 011/79	3,01	0,174				
2	DNER-PRO 269/94	3,148	0,188				

Utilizando os valores apresentados, têm-se os resultados sintetizados na Tabela 3.33.

Tabela 3.33. Comparação entre o deslocamento da estrutura e o deslocamento admissível

Estr	utura Proposta 1: F	Revestimento 12,5 ci	m / Base 17 cm / Subbas	se 30 cm						
Equaçã o	Procedimento	Deslocament o da Estrutura	Deslocamento Admissível	Resultado						
1	DNER-PRO 011/79	– 51,1 x 10 ⁻² mm <i>–</i>	45,4 x 10 ⁻² mm	Inadequad o						
2	DNER-PRO 269/94		48,6 x 10 ⁻² mm	Inadequad o						
		ura Proposta 2 (Sub nto 15 cm / Base 15	leito Laterítico): cm / Subbase 30 cm							
Equaçã o	Procedimento	Deslocament o da Estrutura	Deslocamento Admissível	Resultado						
1	DNER-PRO 011/79	- 38,9 x 10 ⁻² mm —	45,4 x 10 ⁻² mm	Ok						
2	DNER-PRO 269/94	- 36,9 x 10 - 111111 —	48,6 x 10 ⁻² mm	Ok						
Validação da Estrutura Proposta 2 (Subleito Laterítico): Revestimento 14 cm / Base 15 cm / Subbase 30 cm										
Equaçã o	Procedimento	Deslocament o da Estrutura	Deslocamento Admissível	Resultado						
1	DNER-PRO 011/79		45,4 x 10 ⁻² mm	Ok						
2	DNER-PRO 269/94	40,4 x 10 ⁻² mm		Ok						
			terítico – Região do ST-(cm / Subbase 30 cm	06):						
Equaçã o	Procedimento	Deslocament o da Estrutura	Deslocamento Admissível	Resultado						
1	DNER-PRO 011/79	– 42,3 x 10 ⁻² mm —	45,4 x 10 ⁻² mm	Ok						
2	DNER-PRO 269/94	,	48,6 x 10 ⁻² mm	Ok						
Valida			não Laterítico – Região e cm / Subbase 30 cm	do ST-06):						
Equaçã o	Procedimento	Deslocament o da Estrutura	Deslocamento Admissível	Resultado						
1	DNER-PRO 011/79	– 42,5 x 10 ⁻² mm —	45,4 x 10 ⁻² mm	Ok						
2	DNER-PRO 269/94	42,5 X 10 - IIIIII —	48,6 x 10 ⁻² mm	Ok						

3.4.2.2 Deformação específica horizontal de tração na fibra inferior do revestimento

Para a deformação específica horizontal de tração na fibra inferior da camada de revestimento (ɛt) têm-se a seguinte equação:

$$N_{AASHTO} = K.(\frac{1}{\xi_t})^n$$

Onde:

N: número equivalente de operações de eixo simples padrão de rodas duplas de 80 kN acumulado para o período de projeto;

 ξ_t : deformação específica horizontal na tração;

K e n: coeficientes determinados por regressões lineares, particulares para cada tipo de mistura asfáltica e modificados para refletir o desempenho no campo.

Ao adotar os parâmetros atribuídos por Pinto & Preussler para o ligante CAP 50/70 (1980), têm-se os resultados sintetizados na Tabela 3.34.

$$N_{ADMISSÍVEL(AASHTO)} = 2,85.10^{-7}.(\frac{1}{\xi_t})^{3,69}$$

Tabela 3.34. Comparação entre o Número Naashto admissível e o Naashto de projeto

Estrutura Proposta 1: Revestimento 12,5 cm / Base 17 cm / Subbase 20 cm												
Autor	Ano	N AASHTO ADMISSÍVEL	N aashto de projeto	Resultado								
Pinto & Preussler	1980	6,29 x 10 ⁶	1,29 x 10 ⁷	Inadequado								
	Estrutura Proposta 2 (Subleito Laterítico): Revestimento 15 cm / Base 15 cm / Subbase 30 cm											
Autor	Naseuto											
Pinto & Preussler	1980	4,27 x 10 ⁷	1,29 x 10 ⁷	Ok								
	Validação da Estrutura Proposta 2 (Subleito Laterítico): Revestimento 14 cm / Base 15 cm / Subbase 30 cm											
Autor	Ano	N AASHTO ADMISSÍVEL	Naashto de projeto	Resultado								
Pinto & Preussler	1980	3,33 x 10 ⁷	1,29 x 10 ⁷	Ok								
Estru		3 (Subleito não Late o 16 cm / Base 19 c	erítico – Região do ST-0 m / Subbase 30 cm	6):								
Autor	Ano	Naashto admissível	Naashto de projeto	Resultado								
Pinto & Preussler	1980	5,57 x 10 ⁷	1,29 x 10 ⁷	Ok								
Validação d		posta 3 (Subleito n o 16 cm / Base 18 c	ão Laterítico – Região d m / Subbase 30 cm	o ST-06):								
Autor	Ano	N AASHTO ADMISSÍVEL	N AASHTO DE PROJETO	Resultado								
Pinto & Preussler	1980	5,57 x 10 ⁷	1,29 x 10 ⁷	Ok								

3.4.2.3 Deformação específica horizontal de tração na fibra inferior do revestimento

Para a deformação específica vertical de compressão no topo do subleito (ϵV) têm-se a seguinte equação:

$$N_{USACE} = K.(\frac{1}{\xi_{v}})^{n}$$

Onde:

N: número equivalente de operações de eixo simples padrão de rodas duplas de 80 kN acumulado para o período de projeto;

 ξ_{v} : deformação vertical de compressão no subleito;

K e n: coeficientes determinados por regressões lineares, particulares para cada tipo de mistura asfáltica e modificados para refletir o desempenho no campo.

Ao adotar os parâmetros atribuídos por Dormon & Metcalf (1965), têm-se os resultados sintetizados na Tabela 3.35.

$$N_{admissivel(USACE)} = 6,069.10^{-10}.(\frac{1}{\xi_{v}})^{4,762}$$

Tabela 3.35. Comparação entre o Número Naashto admissível e o Naashto de Projeto

Estrutura	Estrutura Proposta 1: Revestimento 12,5 cm / Base 17 cm / Subbase 20 cm										
Autor	Ano	Nusace admissível	N USACE DE PROJETO	Resultado							
Dormon & Metcalf	1965	1,41 x 10 ⁷	5,96 x 10 ⁷	Inadequado							
	Estrutu	ra Proposta 2 (Subleit	o Laterítico):								
Autor	Revestimento 15 cm / Base 15 cm / Subbase 30 cm Autor Ano Nusace admissível Nusace de projeto Resultado										
Dormon & Metcalf	1965	6,09 x 10 ⁷	5,96 x 10 ⁷	Ok							
	Validação da I	Estrutura Proposta 2 (Subleito Laterítico):								
		to 14 cm / Base 15 cm									
Autor	Ano	Nusace admissível	Nusace de projeto	Resultado							
D = === 0											
Dormon & Metcalf	1965	$4,55 \times 10^7$	$5,96 \times 10^7$	Inadequado							
Metcalf		<u> </u>									
Metcalf	ıtura Proposta	<u> </u>	ítico – Região do ST-0								
Metcalf	ıtura Proposta	3 (Subleito não Later	ítico – Região do ST-0								
Metcalf Estru	itura Proposta Revestimen	3 (Subleito não Later to 16 cm / Base 19 cm	ítico – Região do ST-0 i / Subbase 30 cm	06):							
Autor Dormon & Metcalf	Revestimen Ano 1965	3 (Subleito não Later to 16 cm / Base 19 cm Nusace ADMISSÍVEL 6,09 x 10 ⁷	ítico – Região do ST-0 1 / Subbase 30 cm Nusace de projeto 5,96 x 10 ⁷	Resultado Ok							
Autor Dormon & Metcalf	Revestimen Ano 1965 a Estrutura Pr	3 (Subleito não Later to 16 cm / Base 19 cm Nusace ADMISSÍVEL 6,09 x 10 ⁷	ítico – Região do ST-0 1 / Subbase 30 cm Nusace de projeto 5,96 x 10 ⁷ o Laterítico – Região d	Resultado Ok							
Autor Dormon & Metcalf	Revestimen Ano 1965 a Estrutura Pr	3 (Subleito não Later to 16 cm / Base 19 cm Nusace ADMISSÍVEL 6,09 x 10 ⁷ oposta 3 (Subleito nã	ítico – Região do ST-0 1 / Subbase 30 cm Nusace de projeto 5,96 x 10 ⁷ o Laterítico – Região d	Resultado Ok							

3.4.3 Considerações Finais

De acordo com o método proposto, o pavimento apresenta um comportamento inadequado para a Estrutura Proposta 1. Assim, fundamentado neste resultado, houve a necessidade de propor novas estruturas de pavimento. A "Estrutura Proposta 2" está relacionada aos segmentos com subleito laterítico e "Estrutura Proposta 3" é designada aos trechos com subleito não laterítico.

De forma iterativa, verificou-se a necessidade de aumentar a estrutura ao nível proposto devido as elevadas solicitações de tráfego no local. Portanto, as estruturas foram dimensionadas em seus limites de segurança e economicidade, considerando a camada construtiva mínima de 15 cm.

Na sequência, as estruturas definitivas de pavimentação são expostas na Tabela 3.36 e na Tabela 3.37.

Tabela 3.36. Estrutura Proposta 2: segmento com subleito laterítico

Camada	Espessura (cm)	Especificações Técnicas						
CBUQ – Capa de	_	- DNIT 129/2011 - ES						
Rolamento	5	- Módulo de Resiliência ≥ 5.000 MPa						
Pintura de ligação	-	Emulsão asfáltica: RR-2C						
CBUQ – Capa de	F	- DNIT 129/2011 - ES						
Rolamento	5	- Módulo de Resiliência ≥ 5.000 MPa						
Pintura de ligação	-	Emulsão asfáltica: RR-2C						
CBUQ – Capa de	5	- DNIT 129/2011 - ES						
Rolamento	5	- Módulo de Resiliência ≥ 5.000 MPa						
Imprimação	-	- Emulsão Asfáltica Imprimante - EAI						
Base		- DER/SP: ET-DE-P00/008 - CBR ≥ 100%						
(Brita Graduada	15	- Expansão > 0,3%						
Simples)		- Módulo de Resiliência ≥ 260 MPa						
		- DNIT 422/2019 - ES						
Sub-base	00(1)	- CBR ≥ 20,0%						
(Solo local com	30 ⁽¹⁾	- Expansão ≤ 1,0 %						
adição de 4% de cal)		- Módulo de Resiliência ≥ 168 MPa						
Regularização e		- DNIT 137/2010 - ES						
Compactação do	_ (2)	- CBR ≥ 7,0%						
Subleito	_ (4)	- Expansão ≤ 2,0 %						
(solo local)		- Módulo de Resiliência ≥ 65 MPa						

⁽¹⁾ A estrutura de sub-base deverá ser executada em duas camadas de 15 cm cada.

⁽²⁾ Quando for alcançado o nível da plataforma dos cortes devem ser verificadas as condições do solo "in natura" nas camadas superficiais (0,60m superiores, equivalente a camada final do aterro), em termos de grau de compactação. Os segmentos que não atingirem as condições mínimas de compactação devem ser escarificados, homogeneizados, levados à umidade adequada e, então, devidamente compactados, de sorte a alcançar a energia estabelecida no projeto.

Tabela 3.37. Estrutura Proposta 3: segmento com subleito não laterítico

Camada	Espessura (cm)	Especificações Técnicas
CBUQ – Capa de Rolamento	5	- DNIT 129/2011 - ES - Módulo de Resiliência ≥ 5.000 MPa
Pintura de ligação	-	Emulsão asfáltica: RR-2C
CBUQ – Capa de Rolamento	5	- DNIT 129/2011 - ES - Módulo de Resiliência ≥ 5.000 MPa
Pintura de ligação	-	Emulsão asfáltica: RR-2C
CBUQ – Capa de Rolamento	6	- DNIT 129/2011 - ES - Módulo de Resiliência ≥ 5.000 MPa
Imprimação	-	- Emulsão Asfáltica Imprimante - EAI
Base (Brita Graduada Simples)	19	- DER/SP: ET-DE-P00/008 - CBR ≥ 100% - Expansão > 0,3% - Módulo de Resiliência ≥ 260 MPa
Sub-base (Solo local com adição de 4% de cal)	30 ⁽¹⁾	- DNIT 422/2019 - ES - CBR ≥ 20,0% - Expansão ≤ 1,0 % - Módulo de Resiliência ≥ 168 MPa
Regularização e Compactação do Subleito (solo local)	_(2)	- DNIT 137/2010 - ES - CBR ≥ 7,0% - Expansão ≤ 2,0 % - Módulo de Resiliência ≥ 50 MPa

⁽¹⁾ A estrutura de sub-base deverá ser executada em duas camadas de 15 cm cada.

⁽²⁾ Quando for alcançado o nível da plataforma dos cortes devem ser verificadas as condições do solo "in natura" nas camadas superficiais (0,60m superiores, equivalente a camada final do aterro), em termos de grau de compactação. Os segmentos que não atingirem as condições mínimas de compactação devem ser escarificados, homogeneizados, levados à umidade adequada e, então, devidamente compactados, de sorte a alcançar a energia estabelecida no projeto.

Para que o dimensionamento do pavimento tenha validade, é necessário atender as especificações técnicas apresentadas ao final deste relatório e àquelas expostas na Tabela 3.38 e na Tabela 3.39.

Tabela 3.38. Deflexões admissíveis para Estrutura Proposta 2 (laterítico)

Camada	Ordem construtiva	Deflexão Admissível	Deflexão do Controle Tecnológico			
	3ª Camada de 5 cm	38,9 x 10 ⁻² mm	< 38 x 10 ⁻² mm			
CBUQ – Capa de Rolamento	2ª Camada de 5 cm	47,9 x 10 ⁻² mm	< 47 x 10 ⁻² mm			
	1ª Camada de 5 cm	60,2 x 10 ⁻² mm	< 60 x 10 ⁻² mm			
Base	Camada única de 15 cm	71,0 x 10 ⁻² mm	< 71 x 10 ⁻² mm			
Cub hasa	2ª Camada de 15 cm	94,3 x 10 ⁻² mm	< 94 x 10 ⁻² mm			
Sub-base	1ª Camada de 15 cm	118,0 x 10 ⁻² mm	< 118 x 10 ⁻² mm			
Subleito	Camada única	128,0 x 10 ⁻² mm	< 128 x 10 ⁻² mm			

Tabela 3.39. Deflexões admissíveis para Estrutura Proposta 3 (não laterítico)

Camada	Ordem construtiva	Deflexão Admissível	Deflexão do Controle Tecnológico			
	3ª Camada de 5 cm	42,3 x 10 ⁻² mm	< 42 x 10 ⁻² mm			
CBUQ – Capa de Rolamento	2ª Camada de 5 cm	50,7 x 10 ⁻² mm	< 50 x 10 ⁻² mm			
	1ª Camada de 6 cm	62,5 x 10 ⁻² mm	< 62 x 10 ⁻² mm			
Base	Camada única de 19 cm	76,6 x 10 ⁻² mm	< 76 x 10 ⁻² mm			
Sub-base	2ª Camada de 15 cm	111,0 x 10 ⁻² mm	< 111 x 10 ⁻² mm			
Sub-base	1ª Camada de 15 cm	145,0 x 10 ⁻² mm	< 145 x 10 ⁻² mm			
Subleito	Camada única	166,0 x 10 ⁻² mm	< 166 x 10 ⁻² mm			

4 PROJETO DE RESTAURAÇÃO DO PAVIMENTO FLEXÍVEL

4.1 Introdução

O presente projeto trata da concepção das soluções para restauração dos pavimentos flexíveis da Rodovia DF-003 (EPIA) e via STN, conforme trechos indicados na Tabela 4.1 e ilustrados na Figura 4.1.

Tabela 4.1. Trechos de Restauração da Rodovia DF-003 (EPIA) e da via STN

Trecho	Descrição	Estaca início	Estaca fim	Faixas	Extensão (km)
1	EPIA - Sentido Norte (Antes da STN)	0+00	12+50	FD/FM	1,25
2	STN - Sentido Plano Piloto	0+00	12+00	FD/FM	1,20
3	STN - Sentido EPIA	0+00	12+00	FD/FM	1,20
4	EPIA - Sentido Norte (Depois da STN)	0+00	4+20	FD/FM	0,42
5	EPIA - Sentido Sul	0+00	26+40	FD/FM	2,64

Figura 4.1. Mapa dos Trechos de Restauração da Rodovia DF-003 (EPIA) e da via STN (Fonte: Relatório de Estudos Geotécnicos Ligação STN-EPIA – Setor Noroeste. Agosto 2021)

4.2 Levantamentos de Campo

Os estudos e análises utilizados para a elaboração do projeto foram a avaliação objetiva dos pavimentos e os levantamentos deflectométricos com viga Benkelman. Os relatórios de levantamentos constam nos Anexos 1 e 2 do Produto 6 - Estudos de Pavimento, respectivamente.

4.2.1 Avaliação Objetiva da Superfície de Pavimentos Flexíveis

A campanha de avaliação objetiva do pavimento foi realizada seguindo as recomendações previstas nas normas brasileiras DNIT 006/2003-PRO "Avaliação objetiva da superfície de pavimentos flexíveis e semi-rígidos - Procedimento" e DNIT 005/2003-TER "Defeitos nos pavimentos flexíveis e semirrígidos - Terminologia".

O Relatório Técnico dos levantamentos de campo é apresentado no Anexo 1 do Produto 6 – Estudos de Pavimento e referem-se às inspeções realizadas nos trechos descritos na Tabela 4.1.

4.2.2 Levantamento Deflectométrico (Viga Benkelman)

O levantamento das deflexões do pavimento tem como objetivo a avaliação da influência da passagem de cargas sobre o pavimento e como este se comporta quando submetido a estas solicitações. Uma forma de aquisição destes dados é com a utilização da viga Benkelman, que consiste em uma alavanca em que uma de suas extremidades se encontra no pavimento e a outra aciona um extensômetro. Assim, posiciona-se a viga no eixo de carga de um caminhão com peso conhecido e anota-se a variação de leituras no extensômetro em função do deslocamento do caminhão.

O Relatório Técnico dos levantamentos de campo é apresentado no Anexo 2 do Produto 6 - Estudos de Pavimento e referem-se às inspeções realizadas nos trechos descritos na Tabela 4.1.

4.2.3 Sondagens e Ensaios de Laboratório

Para subsidiar os dimensionamentos pelo método da resiliência TECNAPAV (DNER PRO-269/94) e pelo método deflectométrico segundo DNER PRO-11/79, foram realizadas sondagens a cada dois quilômetros, atentando para obtenção de, no mínimo, uma sondagem por trecho. Foram realizadas sondagens SPT, sondagens a trado e aberturas de janelas de inspeção.

Em cada ponto de sondagem foram determinados expeditamente características das camadas de pavimento e subleito.

Em relação às amostras, foram realizados ensaios de caracterização, granulometria por peneiramento e sedimentação, índice de suporte California (ISC/CBR), limites de liquidez e plasticidade, densidade in situ e ensaio de penetração.

Os resultados das sondagens encontram-se no Produto 5 - Estudos Geotécnicos.

4.2.4 Definição dos Segmentos Homogêneos

A definição dos segmentos de comportamento homogêneo considerou a extensão máxima de 2.000 metros de pista, assim como os aspectos de deflexões e condições de superfície. Para cada segmento foram feitas as análises estatísticas de acordo com a metodologia preconizada pelo DNIT, a fim de obter parâmetros representativos para a avaliação funcional e estrutural do pavimento.

Nesse sentido, os trechos 1, 2, 3 e 4 não sofreram segmentação, enquanto o trecho 5 foi segmentado, conforme indica a Tabela 4.2.

Tabela 4.2. Segmentos Homogêneos

Trecho	Segmento Homogêneo	km inicial	km final	Extensão total
1 - EPIA - Sentido Norte (Antes da STN)	1	0,000	1,250	1,250
2 - STN - Sentido Plano Piloto	1	0,000	1,200	1,250
3 - STN - Sentido EPIA	1	0,000	1,200	1,250
4 - EPIA - Sentido Norte (Depois da STN)	1	0,000	0,420	1,250
	1	0,000	2,050	
5 - EPIA - Sentido Sul	2	2,050	2,400	2,640
	3	2,400	2,640	

4.3 Metodologia Adotada para o Dimensionamento

O dimensionamento do reforço do pavimento foi realizado segundo dois métodos: o método da resiliência TECNAPAV (DNER PRO-269/94) e o método deflectométrico segundo DNER PRO-11/79. Assim, a avaliação da solução mais adequada considerou as intervenções sugeridas pelos dois métodos, assim como os levantamentos da condição de superfície do pavimento.

4.3.1 Deflexões Recuperáveis

As deflexões recuperáveis representam comportamento elástico da estrutura e foram aplicadas da mesma forma para ambos os métodos de dimensionamento TECNAPAV (DNER PRO-269/94) e DNER PRO-11/79. Os dados foram obtidos segundo preconiza a norma rodoviária DNER-ME 024-94 de determinação das deflexões pela viga Benkelman e encontram-se no Anexo 2 do Produto 6 - Estudos de Pavimento.

4.3.2 Método TECNAPAV DNER PRO-269/94

O método da resiliência (TECNAPAV) é fundamentado em modelos de fadiga de materiais betuminosos, resiliência de solos finos e granulares e nas tensões e deformações da teoria da elasticidade não linear.

Em relação às amostras, foram realizados ensaios de caracterização, granulometria por peneiramento e sedimentação, índice de suporte California (ISC/CBR), limites de liquidez e plasticidade e ensaio de penetração. Para o método TECNAPAV, foram aplicados os resultados de caracterização, CBR e de granulometria por sedimentação para avaliação do teor de silte no subleito.

Foi aplicado o método de dimensionamento de reforço com mistura nova, considerando a estrutura de referência de três camadas do TECNAPAV, conforme Figura 4.2.

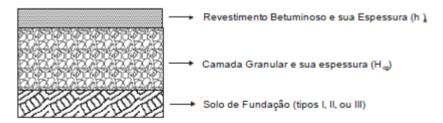


Figura 4.2. Estrutura de referência do TECNAPAV (DNER PRO-269/94 TECNAPAV)

4.3.2.1 Cálculo das Deflexões Características

A partir das deflexões recuperáveis Anexo 2 do Produto 6 - Estudos de Pavimento, foi definida para cada segmento homogêneo a deflexão característica de acordo com a seguinte equação:

$$(D_c = \overline{x} + \sigma)$$

onde:

 D_c = deflexão característica;

x = média aritmética das deflexões de campo;

 σ = desvio – padrão da amostra.

4.3.2.2 Cálculo das espessuras efetivas (h_{ef}) de revestimento betuminoso e levantamento das espessuras existentes (h_e e h_{cg})

As espessuras existentes de revestimento betuminoso (h_e) e de camada granular (h_{cg}) e , assim como de todas as camadas do pavimento, foram levantadas a partir da abertura de janelas de inspeção, constantes no Produto 5 - Estudos Geotécnicos.

As espessuras efetivas (hef) são calculadas conforme equação a seguir:

$$h_{ef} = -5,737 + \frac{807,961}{D_c} + 0,972 I_1 + 4,101 I_2$$

Onde:

h_{ef} = espessura efetiva (cm);

 D_c = deflexão característica (0,01 mm);

 I_1 e I_2 = constantes relacionadas com as características resilientes da 3^a camada da estrutura de referência e de acordo com os seguintes casos indicados na Figura 4.3.

Caso 1 - Espessura da camada granular (Hcg) é menor ou igual a 45cm

3ª camada Tipo I:

 $I_1 = 0$

3ª camada Tipo II:

 $I_1 = 1$

 $I_2 = 0$

 $I_2 = 1$

 3^a camada Tipo III: $I_1 = 0$

Caso 2 - Espessura da camada granular (Hcg) é maior do que 45cm, adotar:

$$I_1 = 0 e I_2 = 1$$

Caso 3 - O hef calculado deve estar compreendido entre os intervalos:

Se hef < 0, adotar hef = 0

 $0 \le hef \le he$

Se hef > he, adotar hef = he

onde:

he - espessura da camada betuminosa existente, em cm.

Quando o grau de trincamento do revestimento existente for superior a 50% ou o somatório de FC-2+FC-3>80% eFC-3>30% podeser conveniente adotar o limite inferior do hef, bem como considerar a solução de recapeamento em camadas integradas de CBUQ e pré-misturado, com a finalidade de minimizar o fenômeno de reflexão de trincas no revestimento projetado.

Figura 4.3. Definição dos índices da 3ª camada (DNER PRO-269/94 TECNAPAV)

4.3.2.3 Classificação do solo de fundação

O percentual de silte no solo de fundação deve ser calculado segundo a equação a seguir:

$$S = 100 - P_1 \times 100$$

Onde:

S = Silte, em %;

 P_1 = percentagem, em peso, de material passante na peneira de 0,005mm;

 P_2 = percentagem, em peso, de material passante na peneira de 0,075mm.

Deste modo, associando o percentual de silte ao CBR, é possível realizar a classificação do solo de fundação, conforme indica a Figura 4.4.

CBR %	S%						
	≤ 35	35 a 65	> 65				
≥10	I	II	Ш				
6 a 9	II	II	Ш				
2 a 5	Ш	Ш	Ш				

Figura 4.4. Classificação dos solos (DNER PRO-269/94 TECNAPAV)

4.3.2.4 Cálculo da deflexão máxima permissível

$$\log D = 3,148 - 0,188 \log N_p$$

Onde:

D = deflexão máxima permissível (0,01 mm);

 $N_p = Número N.$

4.3.2.5 Cálculo da espessura de reforço com mistura nova

A espessura de reforço com mistura nova é calculada a partir da seguinte equação:

HR =
$$-19,015 + \frac{238,14}{D^{1/2}} - 1,357 h_{ef} + 1,014 I_1 + 3,893 I_2$$

Onde:

HR = espessura de reforço.

4.3.3 Método DNER PRO-011/79

4.3.3.1 Cálculo das Deflexões Características e de Projeto

A partir das deflexões recuperáveis Anexo 2 do Produto 6 - Estudos de Pavimento, foi definida para cada segmento homogêneo a deflexão característica de acordo com a seguinte equação:

$$D_c = \overline{D} + \sigma$$

onde:

 D_c = deflexão característica;

 \overline{D} = média aritmética das deflexões de campo;

 σ = desvio – padrão da amostra.

A deflexão de projeto (Dp) foi considerada como sendo igual à deflexão característica, adotando-se, portanto, um fator sazonal igual a 1,0, uma vez que os levantamentos foram realizados em período chuvoso.

4.3.3.2 Deflexão Admissível

Para pavimentos flexíveis, constituídos de revestimento de concreto betuminoso executado sobre camada granular, o valor da deflexão admissível, em 0,01 mm, é dado pela seguinte fórmula:

$$D_{adm} = 10^{(3,01-0,176 \times logN)}$$

onde:

D_{adm} = deflexão admissível;

N = número de repetições de carga equivalentes ao eixo padrão de 8,2 tf.

4.3.3.3 Dimensionamento de Reforço do Pavimento

Para cada segmento homogêneo definido, foi calculada a espessura de reforço do pavimento necessária, em termos de concreto betuminoso. O cálculo da espessura de reforço é dado pela seguinte equação:

$$h_{cb} = 40 \log \frac{D_p}{D_{adm}}$$

onde:

 $h_{cb}\,$ = espessura do reforço do pavimento;

 D_p = deflexão de projeto;

 $D_{\it adm} = {\it deflex\~ao}$ admissível.

4.3.3.4 Solução Indicada pelo Catálogo de Soluções Técnicas - DNIT

Com base nos estudos técnicos foram adotadas soluções de restaurações do pavimento conforme Catálogo de Soluções Técnicas – DNIT e soluções de reforço calculadas pelo PRO – 11/79 para um horizonte de 10 anos.

4.4 Soluções de Projeto

4.4.1 Resultado do dimensionamento TECNAPAV DNER PRO-269/94

A partir das deflexões obtidas pelo equipamento Viga Benkelman, ao IGG, aos resultados obtidos nos ensaios de Índice de Suporte Califórnia (ISC/CBR) e granulometria por peneiramento e sedimentação para avaliação do teor de silte no subleito, o dimensionamento resultou nas espessuras de reforço indicadas na Tabela 4.3, segundo casos de recapeamento definidos na Figura 4.5.

Tabela 4.3. Dimensionamento de reforço Norma DNER PRO-269/94 TECNAPAV

			. 450	ia 7.0. D		- Indian	into de re	, or ço	14011110				7 1 6	- O1 V	/ \i / \ V					
													DNER	-PRC	-269/94	TECNAPA	V			
Trecho	SH	km inicial	km final	Extensão total	IGG	Classif. do IGG	Número N _{USACE} 10 anos	Raio (m)	Dc (0,01 mm)	He (cm)	Hcg (cm)	Tipo Subleito	I1	I2	Da (0,01 mm)	CBR Subleito %	S Subleito %	Hef (cm)	Caso	Reforço Calculado (cm)
1 - EPIA - Sentido Norte (Antes da STN)	1	0,000	1,250	1,250	19	Ótimo	6,0E+07	561	40,63	14	36	II	1	0	48,56	8,40	32,16	14,0	Caso 4	0,0
2 - STN - Sentido Plano Piloto	1	0,000	1,200	1,200	22	Bom	1,1E+07	321	97,88	5	39	III	0	1	66,27	5,50	24,55	5,0	Caso 1	7,5
3 - STN - Sentido EPIA	1	0,000	1,200	1,200	41	Regular	1,1E+07	444	70,25	5	25	II	1	0	66,27	8,50	22,82	5,0	Caso 1	4,5
4 - EPIA - Sentido Norte (Depois da STN)	1	0,000	0,420	0,420	16	Ótimo	6,0E+07	665	47,48	13	65	II	0	1	48,56	6,50	23,29	13,0	Caso 4	1,5
	1	0,000	2,050		69	Regular		578	38,39	14	33	II	1	0	48,65	8,40	28,65	14,0	Caso 4	0,0
5 - EPIA - Sentido Sul	2	2,050	2,400	2,640	102	Ruim	5,9E+07	578	44,83	13	54	II	0	1	48,65	8,30	26,43	13,0	Caso 4	1,5
	3	2,400	2,640		72	Regular		525	28,28	13	54	II	0	1	48,65	8,30	26,43	13,0	Caso 4	1,5

9.3.7 Solução de recapeamento

- Caso 1: Para 3 < HR ≤ 12,5cm a subdivisão em camadas integradas de CBUQ e pré-misturado ou camada única de CBUQ (binder e capa), são alternativas que podem ser consideradas a partir das condições de superficie existente, contemplando as características de deformabilidade das misturas betuminosas a serem utilizadas;</p>
- Caso 2: Para 12,5 < HR ≤ 25cm é recomendada a adoção de camadas integradas dos tipos CBUQ e prémisturado, de acordo com o seguinte procedimento:</p>

$$H_{pm} = 0,60 HR$$

$$HCA = HR - H_{pm}$$

onde:

H_ - espessura de pré-misturado, em cm;

H_{CA} -espessura de concreto asfáltico, em cm;

- IR espessura de reforço em concreto asfáltico, calculada no item 9.3.6, em cm.
- Caso 3: Para HR > 25cm as camadas integradas não devem ser constituídas exclusivamente de misturas betuminosas.
 Para esta situação, deve-se verificar, também, a necessidade de remoção do revestimento existente ou camadas subjacentes, com a reconstrução da estrutura do pavimento.
- Caso 4: Para HR ≤ 3cm e a partir da análise da condição do pavimento existente, segundo as indicações do item 9.2, poderão ser contempladas soluções com lama asfáltica ou tratamento superficial.
- Caso 5: Se as restrições econômicas condicionarem uma espessura máxima para HR inferior ao valor calculado segundo o item 9.3.6, deve ser avaliada a deflexão $\bar{\mathbf{D}}$ e determinado o valor de Nt correspondente, pela expressão:

$$\log N_t = \frac{3,148 - \log D}{0,188}$$

Figura 4.5. Casos para definição da solução de recapeamento (DNER PRO-269/94 TECNAPAV)

4.4.2 Resultado do dimensionamento DNER PRO-011/79

Para as deflexões obtidas pelo equipamento Viga Benkelman somadas ao cálculo de IGG, o dimensionamento resultou nas espessuras de reforço indicadas na Tabela 4.4, que tiveram como base para dimensionamento o indicado na Tabela 4.5, extraída da norma DNER PRO-011/79.

Tabela 4.4. Dimensionamento de reforço Norma DNER PRO-011/79

							101110 00 1		DNER PRO-011/79						
Trecho	SH	km inicial	km final	Extensão total	IGG	Classif. do IGG	Número N _{USACE} 10 anos	Raio (m)	Dp (0,01 mm)	Da (0,01 mm)	Hipótese	Qualidade Estrutural	Critério para Cálculo de Reforço	Medidas Corretivas	Reforço Calculado (cm)
1 - EPIA - Sentido Norte (Antes da STN)	1	0,000	1,250	1,250	19	Ótimo	6,0E+07	561	40,63	43,81	I	Boa	-	Apenas superficiais	0,00
2 - STN - Sentido Plano Piloto	1	0,000	1,200	1,200	22	Bom	1,1E+07	321	97,88	58,61	IIA	Regular	Deflectométrico	Reforço	9,00
3 - STN - Sentido EPIA	1	0,000	1,200	1,200	41	Regular	1,1E+07	449	70,25	58,61	IIA	Regular	Deflectométrico	Reforço	3,50
4 - EPIA - Sentido Norte (Depois da STN)	1	0,000	0,420	0,420	16	Ótimo	6,0E+07	665	47,48	43,81	IIA	Regular	Deflectométrico	Reforço	1,50
	1	0,000	2,050		69	Regular		578	38,39	43,89	I	Boa	-	Apenas superficiais	0,00
5 - EPIA - Sentido Sul	2	2,050	2,400	2,640	102	Ruim	5,9E+07	578	44,83	43,89	IIA	Regular	Deflectométrico	Reforço	0,50
	3	2,400	2,640		72	Regular		525	28,28	43,89	I	Воа	-	Apenas superficiais	0,00

Tabela 4.5. DNER PRO-011/79: Critérios para Avaliação Estrutural

Hipótese	Dados Deflectométricos obtidos	Qualidade Estrutural	Necessidade de Estudos Complementares	Critério para Cálculo de Reforço	Medidas Corretivas	
I	$Dp \le D_{adm}$ $R \ge 100$	ВОА	NÃO		Apenas correções de superfície	
т. т.	Dp > Dadm	Se Dp ≤ 3 D _{adm} REGULAR	NÃO	Deflectrométrico	Reforço	
١.	R ≥ 100	Se Dp > 3 Dadm MÁ	SIM	Deflectométrico e Resistência	Reforço ou Reconstrução	
ш	Dp ≤ Dadm R < 100	REGULAR PARA MÁ	SIM	Deflectométrico e Resistência	Reforço ou Reconstrução	
IV	Dp > Dadm R < 100	MÁ	SIM	Resistência	Reforço ou Reconstrução	
v	_	MÁ O pavimento apresenta d e f o r m a ç õ e s permanentes e rupturas plásticas generalizadas (IGG>180).	SIM	Resistência	Reconstrução	

4.4.3 Definição de Soluções de Recuperação

Foram propostas soluções considerando os dimensionamentos segundo TECNAPAV DNER PRO-269/94 e DNER PRO-011/79, considerando as deflexões obtidas por Viga Benkelman e as condições de superfície e os degraus existentes, assim como as sondagens e ensaios realizados (Produto 6 - Estudos Geotécnicos).

Para as vias em questão, são propostas soluções preliminares (Tabela 4.6) e soluções finais de recuperação do pavimento (Tabela 4.7), todas baseadas no que preconiza o Manual de Restauração de Pavimentos Asfálticos (DNIT, 2006). As soluções preliminares comportam trabalhos preparatórios para a restauração do pavimento, tais como selagem de trincas, reparos localizados e remendos profundos. As soluções finais representam as camadas finais de reforço ou rejuvenescimento do pavimento das faixas de rolamento, acostamentos e retornos.

Tabela 4.6. Definição de Soluções Preliminares

			Soluções Preliminares					
Trecho	km inicial	km final	% área P, E, Ex e R	% área Afundamentos	% área FC-1			
			RL	RP	ST			
1 - EPIA - Sentido Norte (Antes da STN)	0,000	1,250	8,6%	0,0%	6,5%			
2 - STN - Sentido Plano Piloto	0,000	1,200	3,2%	0,0%	40,9%			
3 - STN - Sentido EPIA	0,000	1,200	6,5%	8,6%	30,1%			
4 - EPIA - Sentido Norte (Depois da STN)	0,000	0,420	3,0%	0,0%	9,1%			
	0,000	2,050	14,4%	1,0%	22,4%			
5 - EPIA - Sentido Sul	2,050	2,400	2,5%	0,5%	2,0%			
	2,400	2,640	5,0%	0,5%	6,0%			

Tabela 4.7. Definição de Soluções

				- . ~		Número	DNER PRO- 011/79	DNER PRO- 269/94 TECNAPAV	Soluçõo	es Finais	
Trecho	SH	km inicial	km final	Extensão total	IGG	N _{USACE} 10 anos	Reforço Calculado (cm)	Reforço Calculado (cm)	Solução Final de Pista	Solução Final de Acostamento	Solução Faixas de Aceleração e Desaceleração/Retornos (se degraus > 5 cm)
1 - EPIA - Sentido Norte (Antes da STN)	1	0,000	1,250	1,250	19	6,0E+07	0,0	0,0	Fresagem com Recomp CBUQ-faixa C 15% (3 cm) + Microrrevestimento faixa III 100%	CBUQ-faixa C (4 cm)	Microrrevestimento faixa III
2 - STN - Sentido Plano Piloto	1	0,000	1,200	1,200	22	1,1E+07	9,0	7,5	Capa 3ª camada: CBUQ-faixa C (5 cm) Capa 2ª camada: CBUQ-faixa C (5 cm) Capa 1ª camada: CBUQ-faixa C (6 cm) Reconstrução: Base (19 cm) Sub-base 2ª camada (15 cm) Sub-base 1ª camada (15 cm) Subleito	-	Microrrevestimento faixa III
3 - STN - Sentido EPIA	1	0,000	1,200	1,200	41	1,1E+07	3,5	4,5	Fresagem com Recomp CBUQ-faixa C 15% (3 cm) + CBUQ-faixa C (5 cm)	-	CBUQ-faixa C (4 cm)
4 - EPIA - Sentido Norte (Depois da STN)	1	0,000	0,420	0,420	16	6,0E+07	1,5	1,5	CBUQ-faixa C (3 cm)	CBUQ-faixa C (5 cm)	Microrrevestimento faixa III
	1	0,000	2,050		69		0,0	0,0	Fresagem com Recomp CBUQ-faixa C 10% (3 cm) + Microrrevestimento faixa III 100%	CBUQ-faixa C (4 cm)	Microrrevestimento faixa III
5 - EPIA - Sentido Sul	2	2,050	2,400	2,640	102	5,9E+07	0,5	1,5	Fresagem com Recomp CBUQ-faixa C 5% (3 cm) + CBUQ-faixa C (3 cm)	CBUQ-faixa C (6 cm)	Microrrevestimento faixa III
	3	2,400	2,640		72		0,0	1,5	CBUQ-faixa C (3 cm)	CBUQ-faixa C (6 cm)	Microrrevestimento faixa III

Tabela 4.8 – Definição de Soluções Finais

		km	km	Extensão	Número Nusace 10 anos		Soluções Finais						
Trecho	SH	inicial	final	total			Solução Final de Pista	Solução Final de Acostamento	Solução Faixas de Aceleração e Desaceleração/Retornos (se degraus > 5 cm)				
1 - EPIA - Sentido Norte (Antes da STN)	1	0,000	1,250	1,250	6,0E+07	Fresagem com Recomp CBUQ-faixa C 15% (3 cm) + Microrrevestimento faixa III 100%		CBUQ-faixa C (4 cm)	Microrrevestimento faixa III				
2 - STN - Sentido Plano Piloto	1	0,000	1,200	1,200	1,1E+07	Capa 3ª camada: CBUQ-faixa C (5 cm) Capa 2ª camada: CBUQ-faixa C (5 cm) Capa 1ª camada: CBUQ-faixa C (6 cm) Reconstrução: Base (19 cm) Sub-base 2ª camada (15 cm) Sub-base 1ª camada (15 cm) Subleito		-	Microrrevestimento faixa III				
3 - STN - Sentido EPIA	1	0,000	1,200	1,200	1,1E+07	Fresagem o	com Recomp CBUQ-faixa C 15% (3 cm) + CBUQ-faixa C (5 cm)	-	CBUQ-faixa C (4 cm)				
4 - EPIA - Sentido Norte (Depois da STN)	1	0,000	0,420	0,420	6,0E+07		CBUQ-faixa C (3 cm)	CBUQ-faixa C (5 cm)	Microrrevestimento faixa III				
E EDIA Cantida Cul	1	0,000	2,050	2.640	5,9E+07		com Recomp CBUQ-faixa C 10% (3 cm) + crorrevestimento faixa III 100%	CBUQ-faixa C (4 cm)	Microrrevestimento faixa III				
5 - EPIA - Sentido Sul	2*	2,050	2,640	2,640		Fresagem	com Recomp CBUQ-faixa C 5% (3 cm) + CBUQ-faixa C (3 cm)	CBUQ-faixa C (6 cm)	Microrrevestimento faixa III				

^{*} O Trecho 5 conta com dimensionamento respeitando a segmentação homogênea que resultou em 3 SH. Contudo, para fins exclusivamente práticos, tendo em vista as soluções de cunho semelhante, nessa tabela os segmentos 2 e 3 foram unificados como SH2. O ajuste em nada altera o dimensionamento realizado.

a) Solução Preliminar Geral - Selagem de Trincas

A selagem de trincas foi estabelecida nos locais onde cabe a recuperação de fissuras e trincas (exceto trincas de fadiga ou couro de jacaré). Neste caso, buscando a minimização da propagação de trincas nas camadas de reforço, a selagem deve ser executada previamente ao reforço ou camada final de revestimento, conforme especificação de soluções finais.

As especificações técnicas de materiais e serviços são descritas no Capítulo **Erro! Fonte de referência não encontrada.** deste relatório.

b) Solução Preliminar Geral - Reparo Localizado de Panelas, Escorregamentos, Exsudação e Remendos

Os defeitos como panelas, escorregamentos, exsudação e remendos indicam demanda do pavimento por melhorias estruturais. Assim, para acomodar reforço, tais defeitos devem ser sofrer reparo localizado prévio.

O percentual da área a ser reparada em cada trecho foi levantado de forma preliminar através da avaliação objetiva do pavimento, e anexado na Tabela 4.6. Este levantamento indica a existência dos defeitos, mas não indica precisamente sua área. Deste modo, cabe execução do reparo indicado exclusivamente e pontualmente onde forem constatados os defeitos pertinentes.

Nos trechos onde for prevista fresagem, esta deve ser executada anteriormente ao reparo localizado. Após a execução do reparo localizado, cabe a recomposição da espessura de fresagem com CBUQ faixa C, conforme especificação de soluções finais.

As especificações técnicas de materiais e serviços são descritas no Capítulo **Erro! Fonte de referência não encontrada.** deste relatório.

c) Solução Preliminar Geral - Remendo Profundo em Afundamentos

Afundamentos indicam deficiência estruturais no pavimento, podendo afetar revestimento e, eventualmente, camadas inferiores do pavimento. Dessa maneira, ficam estabelecidos remendos profundos para correção dos afundamentos existentes no pavimento, sendo este reparo de caráter permanente.

O percentual da área a ser reparada em cada trecho foi levantado de forma preliminar através da avaliação objetiva do pavimento, e anexado na Tabela 4.6. Este levantamento indica a existência dos defeitos, mas não indica precisamente sua área. Deste modo, cabe execução do reparo indicado exclusivamente e pontualmente onde forem constatados os defeitos pertinentes.

Nos trechos onde for prevista fresagem, esta deve ser executada anteriormente ao remendo profundo. Após a execução do remendo profundo, cabe a recomposição da espessura de fresagem com CBUQ faixa C, conforme especificação de soluções finais.

As especificações técnicas de materiais e serviços são descritas no Capítulo **Erro! Fonte de referência não encontrada.** deste relatório.

d) Solução Final - Trecho 1: EPIA - Sentido Norte (Antes da STN)

Pista – Trecho 1:

Os dimensionamentos do trecho 1 pelas normas DNER PRO-11/79 e DNER PRO-269/94 TECNAPAV indicaram espessura de reforço nula. Neste caso, restam atender às necessidades superficiais do pavimento.

Para isso, foram previstos de 3 cm de fresagem à frio descontínua (15%) de revestimento com recomposição de CBUQ (faixa C) na mesma espessura para atender às trincas FC-2 e FC-3, principalmente couro de jacaré e trincas de fadiga. A fresagem deve ser executada anteriormente aos reparos localizados à selagem de trincas. Após a execução das soluções preliminares, cabe a recomposição da espessura fresada com CBUQ.

A fresagem deve ser executada conforme a distribuição das trincas mais severas, segundo unifilar de fresagem no Anexo A realizado a partir da avaliação objetiva do pavimento.

Após a recomposição da espessura fresada com CBUQ, uma vez que o dimensionamento indicou necessidade apenas de intervenções superficiais, cabe indicar a aplicação de microrrevestimento em toda a extensão do trecho para rejuvenescimento da superfície de rolamento.

Acostamentos – Trecho 1:

Buscando reduzir o elevado degrau existente, 7,5 cm, e manter o revestimento em CBUQ, é previsto para os trechos de acostamento um reforço de 4 cm de CBUQ (faixa C).

Faixas de Aceleração e Desaceleração/Retornos – Trecho 1:

Os retornos e faixas de aceleração e desaceleração podem potencialmente enfrentar degraus elevados quando encontram a pista de rolamento. Embora não tenham sido indicadas as condições dos degraus existentes entre retornos e pista de rolamento, entende-se ser necessário sugerir soluções para a mitigação desta condição, caso os degraus resultantes sejam maiores que 5 cm. Deste modo, considerando que os retornos do Trecho 1 dão acesso ao Trecho 5 e, ainda, levando em conta as soluções do Trecho 5, sugere-se aplicação de microrrevestimento em todo o retorno e faixas de aceleração e desaceleração.

As especificações técnicas de materiais e serviços são descritas no Capítulo **Erro! Fonte de referência não encontrada.** deste relatório.

e) Solução Final - Trecho 2: STN - Sentido Plano Piloto

· Pista – Trecho 2:

Os dimensionamentos do trecho 2 pelas normas DNER PRO-11/79 e DNER PRO-269/94 TECNAPAV indicaram espessuras de reforço de 9,0 cm e 7,5 cm,

respectivamente. Neste caso, além das necessidades superficiais do pavimento, as normas especificam alto reforço estrutural. Por se tratar de uma espessura de reforço elevada, o degrau final entre a pista e as faixas de aceleração e desaceleração dos retornos e acessos seria excessivo. Considerando, deste modo, o reforço elevado, os degraus resultantes inapropriados e a condição de superfície da pista, foi considerado para o trecho 2 a solução de reconstrução total do pavimento. A estrutura deve ser coerente com a estrutura proposta 3 de pavimento flexível para implantação em solo não laterítico indicada na Tabela 3.39 e replicada na Tabela 4.7. A solução consta apresentada no Capítulo 4 de dimensionamento do pavimento flexível.

Para definição dessa solução, levou-se em consideração que os trechos a serem implantados segundo a proposta 3 representam no projeto vias de acesso direto ao trecho 2. Desta forma, considera-se fundamental a compatibilidade estrutural e de trafegabilidade das estruturas, buscando a segurança da via. Ainda, o trecho 2 apresenta CBR de 5,5% e número N de 1,1E+07, representando condições ligeiramente melhores do que as premissas da proposta 3 de pavimento flexível. Sendo assim, considera-se adequada a solução de reconstrução.

Faixas de Aceleração e Desaceleração/Retornos – Trecho 2:

Uma vez que a solução proposta para o trecho 2 é de reconstrução, os retornos e faixas de aceleração e desaceleração contam com a solução de microrrevestimento para elevação da vida útil, rejuvenescimento do pavimento e melhoria da trafegabilidade da via STN como um todo.

As especificações técnicas de materiais e serviços são descritas no Capítulo **Erro! Fonte de referência não encontrada.** deste relatório.

f) Solução Final - Trecho 3: STN - Sentido EPIA

Pista – Trecho 3:

Os dimensionamentos do trecho 3 pelas normas DNER PRO-11/79 e DNER PRO-269/94 TECNAPAV indicaram espessuras de reforço de 3,5 cm e 4,5 cm, respectivamente. Neste caso, além das necessidades superficiais do pavimento, cabe especificação de reforço estrutural, considerando o resultado de 4,5 cm obtido pela DNER PRO-269/94 TECNAPAV.

Considerando a presença de trincas FC-2 e FC-3, principalmente couro de jacaré e trincas de fadiga, foram previstos de 3 cm de fresagem à frio descontínua (15%) de revestimento com recomposição de CBUQ (faixa C) na mesma espessura. A fresagem deve ser executada anteriormente aos remendos profundos, reparos localizados e à selagem de trincas. Após a execução das soluções preliminares, cabe a recomposição da espessura fresada com CBUQ.

A fresagem deve ser executada conforme a distribuição das trincas mais severas, segundo unifilar de fresagem no Anexo A realizado a partir da avaliação objetiva do pavimento.

Após a recomposição da espessura fresada com CBUQ, cabe indicar a aplicação de camada de reforço adicional de 5 cm de CBUQ (faixa C) em toda a extensão do trecho.

Faixas de Aceleração e Desaceleração/Retornos – Trecho 3:

Os retornos e faixas de aceleração e desaceleração podem potencialmente enfrentar degraus elevados quando encontram a pista de rolamento. Embora não tenham sido indicadas as condições dos degraus existentes entre retornos e pista de rolamento, entende-se ser necessário sugerir soluções para a mitigação desta condição, caso os degraus resultantes sejam maiores que 5 cm.

Dadas as camadas de reforço aplicadas no Trecho 2 (9 cm) e no Trecho 3 (4 cm), os retornos entre os trechos podem sofrer com elevados degraus. Para solucionar este problema, aumentar a vida útil do pavimento como um todo e, ainda, guardar compatibilidade com a solução de restauração aplicada ao Trecho 2 (STN – sentido Plano Piloto), resta indicado reforço de 4 cm nos pavimentos de retornos e faixas de aceleração e desaceleração.

As especificações técnicas de materiais e serviços são descritas no Capítulo **Erro! Fonte de referência não encontrada.** deste relatório.

g) Solução Final – Trecho 4: EPIA - Sentido Norte (Depois da STN)

Pista – Trecho 4:

Os dimensionamentos do trecho 4 pelas normas DNER PRO-11/79 e DNER PRO-269/94 TECNAPAV indicaram espessuras de reforço de 1,5 cm. Neste caso, além das necessidades superficiais do pavimento, cabe especificação de reforço estrutural.

As soluções preliminares de reparos localizados e selagem de trincas devem ser executadas primeiramente. Após a execução das soluções preliminares, cabe indicar a aplicação de camada de reforço adicional de 3 cm de CBUQ (faixa C) em toda a extensão do trecho. Apesar de o dimensionamento indicar 1,5 cm, a espessura mínima de 3 cm é aplicável, uma vez que o diâmetro máximo do agregado deve ser inferior a 2/3 da espessura da camada, conforme o normativo DNIT 031/2006 ES.

Acostamentos – Trecho 4:

Buscando reduzir o elevado degrau existente, 7,3 cm, e manter o revestimento em CBUQ, é previsto para os trechos de acostamento um reforço de 5 cm de CBUQ (faixa C).

Faixas de Aceleração e Desaceleração/Retornos – Trecho 4:

Os retornos e faixas de aceleração e desaceleração podem potencialmente enfrentar degraus elevados quando encontram a pista de rolamento. Embora não tenham sido indicadas as condições dos degraus existentes entre retornos e pista de rolamento, entende-se ser necessário sugerir soluções para a mitigação desta condição, caso os degraus resultantes sejam maiores que 5 cm. Deste modo, considerando que os retornos do Trecho 4 dão acesso ao Trecho 5 e, ainda, levando em conta as soluções do Trecho 5, sugere-se aplicação de microrrevestimento em todo o retorno e faixas de aceleração e desaceleração.

As especificações técnicas de materiais e serviços são descritas no Capítulo **Erro! Fonte de referência não encontrada.** deste relatório.

h) Solução Final - Trecho 5: EPIA - Sentido Sul

O trecho 5 foi dividido em três segmentos homogêneos, tais como sugeridos na Tabela 4.2 e resumidos na Tabela 4.9. Para fins exclusivamente práticos e sem prejuízo do dimensionamento realizado segundo os normativos referenciados, os segmentos 2 e 3 foram unificados, conforme indicado na Tabela 4.8.

Tabela 4.9. Segmentação Homogênea do Trecho 5

	Cogmonto			SH final			
Trecho	Segmento Homogêneo	km inicial	km final	SH	km inicial	km final	
	SH 1	0,000	2,050	SH1	0,000	2,050	
5 - EPIA - Sentido Sul	SH 2	2,050	2,400	CU2*	2.050	2,640	
	SH 3	2,400	2,640	SH2*	2,050		

^{*} O Trecho 5 conta com dimensionamento respeitando a segmentação homogênea que resultou em 3 SH. Contudo, para fins exclusivamente práticos, tendo em vista as soluções de cunho semelhante, nessa tabela os segmentos 2 e 3 foram unificados como SH2. O ajuste em nada altera o dimensionamento realizado.

As soluções encontram-se descritas a seguir.

Pista – Trecho 5:

SH 1:

Os dimensionamentos do SH 1 do trecho 5 pelas normas DNER PRO-11/79 e DNER PRO-269/94 TECNAPAV indicaram espessura de reforço nula. Neste caso, restam atender às necessidades superficiais do pavimento.

Para isso, foram previstos de 3 cm de fresagem à frio descontínua (10%) de revestimento com recomposição de CBUQ (faixa C) na mesma espessura para atender às trincas FC-2 e FC-3, principalmente couro de jacaré e trincas de fadiga. A fresagem deve ser executada anteriormente aos remendos profundos, aos reparos localizados e à selagem de trincas. Após a execução das soluções preliminares, cabe a recomposição da espessura fresada com CBUQ.

A fresagem deve ser executada conforme a distribuição das trincas mais severas, segundo unifilar de fresagem no Anexo A realizado a partir da avaliação objetiva do pavimento.

Após a recomposição da espessura fresada com CBUQ, uma vez que o dimensionamento indicou necessidade apenas de intervenções superficiais, cabe indicar a aplicação de microrrevestimento em toda a extensão do segmento para rejuvenescimento da superfície de rolamento.

SH 2:

Os dimensionamentos do SH 2 do trecho 5 pelas normas DNER PRO-11/79 e DNER PRO-269/94 TECNAPAV indicaram espessuras de reforço de 0,5 cm e 1,5 cm, respectivamente. Neste caso, além das necessidades superficiais do pavimento, cabe especificação de reforço estrutural, considerando o resultado de 1,5 cm obtido pela DNER PRO-269/94 TECNAPAV.

Considerando a presença de trincas FC-2 e FC-3, principalmente couro de jacaré e trincas de fadiga, foram previstos de 3 cm de fresagem à frio descontínua (5%) de revestimento com recomposição de CBUQ (faixa C) na mesma espessura. A fresagem deve ser executada anteriormente aos remendos profundos, reparos localizados e à selagem de trincas. Após a execução das soluções preliminares, cabe a recomposição da espessura fresada com CBUQ.

A fresagem deve ser executada conforme a distribuição das trincas mais severas, segundo unifilar de fresagem no Anexo A realizado a partir da avaliação objetiva do pavimento.

Após a recomposição da espessura fresada com CBUQ, cabe indicar a aplicação de camada de reforço adicional de 3 cm de CBUQ (faixa C) em toda a extensão do segmento. Apesar de o dimensionamento indicar 0,5 cm, a espessura mínima de 3 cm é aplicável, uma vez que o diâmetro máximo do agregado deve ser inferior a 2/3 da espessura da camada, conforme o normativo DNIT 031/2006 ES.

SH 3:

Os dimensionamentos do SH 3 do trecho 5 pelas normas DNER PRO-11/79 e DNER PRO-269/94 TECNAPAV indicaram espessuras de reforço 0,0 cm e 1,5 cm, respectivamente. Neste caso, além das necessidades superficiais do pavimento, cabe especificação de reforço estrutural, considerando o resultado de 1,5 cm obtido pela DNER PRO-269/94 TECNAPAV.

Após a execução das soluções preliminares, uma vez que o dimensionamento indicou necessidade apenas de intervenções superficiais, cabe indicar a de camada de reforço adicional de 3 cm de CBUQ (faixa C) em toda a extensão do segmento.

SH2*:

Com base na união dos segmentos 2 e 3, conforme indicado na Tabela 4.8 e Tabela 4.9, resume-se as explanações realizadas acima pela solução de 3 cm de fresagem à frio descontínua (5% da área) de revestimento seguida de recomposição de CBUQ (faixa C) de 3 cm na mesma área.

A fresagem será ser executada previamente aos remendos profundos, reparos localizados e à selagem de trincas, e deve respeitar o unifilar de fresagem indicado no Anexo A. Após a execução das soluções preliminares, cabe a recomposição da espessura fresada com CBUQ.

Após a recomposição da espessura fresada com CBUQ em 5% do segmento, deve ser realizada a aplicação de camada de reforço adicional de 3 cm de CBUQ (faixa C) em toda a extensão do segmento.

Acostamentos – Trecho 5:

Buscando reduzir o elevado degrau existente (SH1 = 7,5 cm; SH2 = 7,8 cm; e SH3 = 7,5 cm) e mitigar o degrau resultante do reforço da pista de rolamento, é previsto para os trechos de acostamento as espessuras de reforço indicadas a seguir:

SH 1: 4,0 cm de CBUQ (faixa C)

SH 2: 6,0 cm de CBUQ (faixa C)

SH 3: 6,0 cm de CBUQ (faixa C)

· Faixas de Aceleração e Desaceleração/Retornos – Trecho 5:

Os retornos e faixas de aceleração e desaceleração podem potencialmente enfrentar degraus elevados quando encontram a pista de rolamento. Embora não tenham sido indicadas as condições dos degraus existentes entre retornos e pista de rolamento, entende-se ser necessário sugerir soluções para a mitigação desta condição, caso os degraus resultantes sejam maiores que 5 cm. Deste modo, considerando que os retornos do Trecho 5 dão acesso aos Trechos 1 e 4 e, ainda, levando em conta as soluções desses trechos, sugere-se aplicação de microrrevestimento em todos os retornos e faixas de aceleração e desaceleração.

As especificações técnicas de materiais e serviços são descritas no Capítulo **Erro! Fonte de referência não encontrada.** deste relatório.

4.4.4 Resumo das soluções de recuperação

A Tabela 4.10 apresenta um quadro resumo de soluções e a Tabela 4.11 apresenta as deflexões admissíveis. Essas informações são complementarmente ilustradas nos Unifilares de Fresagem do Anexo A.

Tabela 4.10. Quadro resumo de soluções

						Soluç	ões Prelim	inares	Soluções Finais				
Trecho	SH		km final	Extensão total	Número N _{USACE} 10 anos	% área P, E, Ex e R	% área Afund	% área FC-1	Solução Final de Pista	Solução Final de Acostamento	Solução Faixas de Aceleração e Desaceleração/Retornos (se degraus > 5 cm)		
						RL	RP	ST			(se degrads > 5 cm)		
1 - EPIA - Sentido Norte (Antes da STN)	1	0,000	1,250	1,250	6,0E+07	8,6%	0,0%	6,5%	Fresagem com Recomp CBUQ-faixa C 15% (3 cm) + Microrrevestimento faixa III 100%	CBUQ-faixa C (4 cm)	Microrrevestimento faixa III		
2 - STN - Sentido Plano Piloto	1	0,000	1,200	1,200	1,1E+07	-	-	-	Reconstrução	-	Microrrevestimento faixa III		
3 - STN - Sentido EPIA	1	0,000	1,200	1,200	1,1E+07	6,5%	8,6%	30,1%	Fresagem com Recomp CBUQ-faixa C 15% (3 cm) + CBUQ-faixa C (5 cm)	-	CBUQ-faixa C (4 cm)		
4 - EPIA - Sentido Norte (Depois da STN)	1	0,000	0,420	0,420	6,0E+07	3,0%	0,0%	9,1%	CBUQ-faixa C (3 cm)	CBUQ-faixa C (5 cm)	Microrrevestimento faixa III		
	1	0,000	2,050			14,4%	1,0%	22,4%	Fresagem com Recomp CBUQ-faixa C 10% (3 cm) + Microrrevestimento faixa III 100%	CBUQ-faixa C (4 cm)	Microrrevestimento faixa III		
5 - EPIA - Sentido Sul	2	2,050	2,400	2,640	5,9E+07	2,5%	0,5%	2,0%	Fresagem com Recomp CBUQ-faixa C 5% (3 cm) + CBUQ-faixa C (3 cm)	CBUQ-faixa C (6 cm)	Microrrevestimento faixa III		
	3	2,400	2,640	-		5,0%	0,5%	6,0%	CBUQ-faixa C (3 cm)	CBUQ-faixa C (6 cm)	Microrrevestimento faixa III		

Tabela 4.11. Deflexões admissíveis nos trechos de restauração

					DNE	R PRO-011/79	DNER-PRO	0-269/94 TECNAPAV	Soluções Finais
Trecho	SH	km inicial	km final	Extensão total	Deflexão admissível (0,01 mm)	Deflexão de Controle Tecnológico (0,01 mm)	Deflexão admissível (0,01 mm)	Deflexão de Controle Tecnológico (0,01 mm)	Solução Final de Pista
1 - EPIA - Sentido Norte (Antes da STN)	1	0,000	1,250	1,250	43,81	< 40	48,56	< 40	Fresagem com Recomp CBUQ-faixa C 15% (3 cm) + Microrrevestimento faixa III 100%
2 - STN - Sentido Plano Piloto	1	0,000	1,200	1,200	58,61	Conforme projeto de pavimento flexível novo	66,27	Conforme projeto de pavimento flexível novo	Reconstrução
3 - STN - Sentido EPIA	1	0,000	1,200	1,200	58,61	< 43	66,27	< 54	Fresagem com Recomp CBUQ-faixa C 15% (3 cm) + CBUQ-faixa C (5 cm)
4 - EPIA - Sentido Norte (Depois da STN)	1	0,000	0,420	0,420	43,81	< 36	48,56	< 45	CBUQ-faixa C (3 cm)
	1	0,000	2,050		43,89	< 38	48,65	< 38	Fresagem com Recomp CBUQ-faixa C 10% (3 cm) + Microrrevestimento faixa III 100%
5 - EPIA - Sentido Sul	2	2,050	2,400	2,640	43,89	< 36	48,65	< 44	Fresagem com Recomp CBUQ-faixa C 5% (3 cm) + CBUQ-faixa C (3 cm)
	3	2,400	2,640		43,89	< 28	48,65	< 28	CBUQ-faixa C (3 cm)

^{*}Uma vez adotados os reforços calculados pela norma DNER-PRO-269/94 TECNAPAV, assumindo posicionamento conservador, as deflexões admissíveis para controle tecnológico devem ser utilizadas em consonância com o preconizado pelo mesmo normativo.

5 ESPECIFICAÇÕES TÉCNICAS DE MATERIAIS E SERVIÇOS

A execução dos serviços de pavimentação deverá seguir rigorosamente as instruções de execução e especificações de materiais apresentadas nas normas técnicas do DNIT, sem as quais este dimensionamento não terá validade.

5.1 Cimento Asfáltico de Petróleo modificado por Polímero Elastomérico

O revestimento do pavimento flexível será executado em cimento asfáltico de petróleo modificado por polímero elastomérico. Os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela Norma DNIT 129/2011.

Os cimentos asfálticos modificados por polímeros elastoméricos são classificados, segundo o ponto de amolecimento e a recuperação elástica a 25 °C. Para este projeto, indica-se o tipo 55/75-E que é detalhada na Tabela 5.1.

Tabela 5.1. Características do cimento asfáltico de petróleo modificado por polímero elastomérico (norma DNIT 129/2011-EM)

elactemente (nelma 2111 126/2011 2111)												
Características	Unidade	55/75-E	60/85-E	65/90-E	Método de	Ensaio						
Caracteristicas	Unidade	Limite	e da Especif	ABNT/NBR	DNIT-ME							
Penetração 25°C, 5s, 100g	0,1 mm	45 – 70	40 - 70	40 - 70	-	155/2010						
Ponto de Amolecimento, mín	°C	55	65	65	-	131/2010						
Ponto de Fulgor, mín.	°C	235	235	235	11341	-						
Viscosidade Brookfield a 135°C, spíndle 21, 20 rpm, máx.	сР	3000	3000	3000	15184	-						
Viscosidade Brookfield a 150°C, spíndle 21, 50 rpm, máx.	сР	2000	2000	2000	15184	-						
Viscosidade Brookfield a 177°C, spíndle 21, 100 rpm, máx.	сР	1000	1000	1000	15184	-						
Ensaio de Separação de Fase, máx.	°C	5	5	5	15166	-						
Recuperação Elástica a 25°C, 20 cm, mín.	%	75	85	90	-	130/2010						
Ensaio do calor e do ar - RTF	OT, 163°C,	85 minuto	S									
Variação de massa, máx., (1)	% massa	1,0	1,0	1,0	15235	-						
Variação do PA, máx.	°C	-5 a +7	-5 a +7	-5 a +7	-	131/2010						
Percentagem de Penetração Original, mín	%	60	60	60	-	155/2010						
Percentagem de Recuperação Elástica Original a 25°C, mín.	%	80	80	80	-	130/2010						

Dentre as recomendações contidas na especificação, para a capa de rolamento, destaca-se a necessidade particular deste projeto em atingir um módulo de resiliência maior ou igual a 5.000 MPa.

Destaca-se que caso seja desejável a utilização de materiais com especificações

diferentes das indicadas, os cálculos devem ser refeitos para se obter uma melhor relação de custo-benefício para a obra.

5.2 Cimento Asfáltico de Petróleo - Restauração

A restauração de pavimentos flexíveis prevê execução de reforço em CBUQ-faixa C. Tendo em vista o revestimento existente na via EPIA e buscando manter o padrão de comportamento físico e reológico do pavimento, cabe a utilização de cimento asfáltico de petróleo CAP 30-45 para fins de reforço.

Os materiais utilizados, a faixa granulométrica, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela Norma DNIT 031/2006.

5.3 Microrrevestimento Asfáltico a frio modificado por Polímero

O microrrevestimento aplicado para rejuvenescimento do pavimento, em função de sua espessura reduzida, não deve possuir caráter estrutural relevante, sendo aplicado apenas em trechos onde o dimensionamento não indicar necessidade de reforço. Indicase o microrrevestimento faixa III com espessura final mínima de 24 mm, executado em duas camadas de 12 mm cada.

Para execução do microrrevestimento asfáltico deve ser utilizada a emulsão asfáltica modificada por polímero elastomérico, de ruptura controlada, catiônica do tipo RC1C-E, em conformidade com a norma DNIT 128/2010-EM. Ainda que não esteja preconizado na norma DNIT 035/2018, o tempo de liberação ao tráfego deverá ser de 1h30, em acordo ao descrito na ES-P 30/17 do DER/PR.

Os materiais utilizados, a faixa granulométrica, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela Norma DNIT 035/2018.

Destaca-se que caso seja desejável a utilização de materiais com especificações diferentes das indicadas, os cálculos devem ser refeitos para se obter uma melhor relação de custo-benefício para a obra.

5.4 Pintura de ligação

Para a pintura de ligação, prevista na estrutura do pavimento, o ligante asfáltico empregado deve ser do tipo RR-1C.

A taxa recomendada de ligante asfáltico residual é de 0,3 l/m² a 0,4 l/m. Antes da aplicação, a emulsão deve ser diluída na proporção de 1:1 com água a fim de garantir uniformidade na distribuição desta taxa residual. A taxa de aplicação da emulsão diluída é da ordem de 0,8 l/m² a 1,0 l/m².

Ressalta-se que a água deve ser isenta de teores nocivos de sais ácidos, álcalis, ou matéria orgânica e outras substâncias nocivas.

Os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela NORMA DNIT 145/2010 - ES.

5.5 Imprimação betuminosa

Para a imprimação betuminosa deve-se empregar emulsão asfáltica do tipo EAI, em conformidade com a norma DNIT 165/2013 – EM. A taxa de aplicação "T" é aquela que pode ser absorvida pela base em 24 horas, devendo ser determinada experimentalmente na obra. Considerando tratar-se de emulsão asfáltica, as taxas de aplicação devem ser da ordem de 0,9 a 1,7 l/m².

Os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço deverão ser balizados pela Norma DNIT 144/2014 - ES.

5.6 Base: Brita Graduada Simples (BGS)

O material de base deverá ser constituído de brita graduada simples, atendendo as recomendações da Especificação Técnica do DER-SP, ET-DE-P00/008. Para essa especificação técnica destaca-se a requisição de um CBR maior ou igual a 100% e uma expansão inferior a 0,3%. Ademais, a utilização dos materiais estará restrita àqueles que se enquadram nas faixas granulométricas A ou B.

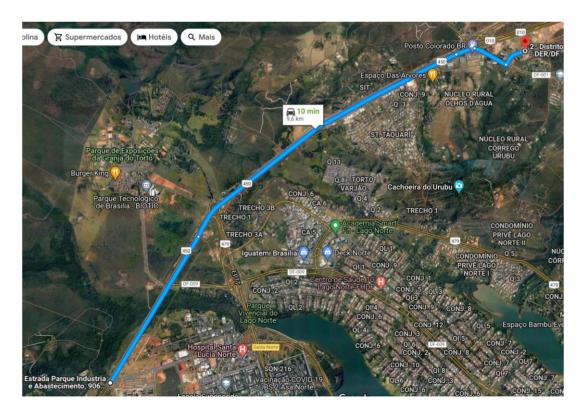
5.7 Sub-base: Solo melhorado com Cal (Adição de 4%)

O material de sub-base deverá ser constituído de solo local com adição de 4% de cal, atendendo as recomendações da Norma DNIT 422/2019 – ES. Destaca-se que a cal utilizada deve ser a mesma do ensaio descrito neste relatório, que é a cal hidratada CH-III. A mistura deverá ocorrer na pista e, assim, atenção especial deve ser atribuída ao item 5.4.1 "Mistura na pista" da norma DNIT 422/2019 – ES.

5.8 Subleito: Solo local

A Norma DNIT-108/2009 – ES cita que para efeito da execução do corpo de aterro, o material deverá apresentar capacidade de suporte adequada (CBR ≥ 2%) e expansão menor ou igual a 4%, fundamentados na compactação em energia Proctor normal (DNER-ME 129/94 – Método A). Com relação à execução da camada final dos aterros, a norma cita que o material deverá apresentar a melhor capacidade de suporte (CBR ≥ CBR_P) e expansão menor ou igual a 2%, por intermédio dos ensaios de compactação em energia intermediária (DNER-ME 129/94 – Método B).

A Norma DNIT-106/2009 - ES, item 5.3.4 alínea "c" cita que quando for alcançado o


nível da plataforma dos cortes devem ser verificadas as condições do solo "in natura" nas camadas superficiais (0,60m superiores, equivalente a camada final do aterro), em termos de grau de compactação. Os segmentos que não atingirem as condições mínimas de compactação devem ser escarificados, homogeneizados, levados à umidade adequada e, então, devidamente compactados, de sorte a alcançar a energia estabelecida no projeto.

Com relação à regularização do subleito, serviço proposto para terraplenagem já concluída, o material empregado deverá ser proveniente do próprio subleito. Os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela NORMA DNIT 137/2010 – ES.

Observa-se que caso durante a execução dos serviços forem encontrados materiais com expansão superior a 2% ou CBR inferior ou igual ao valor de projeto, deverá ser realizado um estudo específico do local, avaliando-se a possibilidade de substituição de material ou execução de camada de reforço.

5.9 Fresagem

Para o serviço de fresagem, os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela norma DNER-ES 159/11. O bota-fora deste material será o pátio do 2º Distrito Rodoviário do DER/DF, que está localizado a 9,6 km do trecho em projeto (Figura 5.1).

Figura 5.1. Distância de 9,6 km do trecho até o bota-fora, no pátio do 2º Distrito Rodoviário do DER/DF (*Google Earth*, 2022).

5.10 Reparos Localizados e Remendos Profundos

Para o serviço de reparos localizados e remendos profundos, os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela norma DNIT 154/2010 — ES. Os reparos localizados devem ser realizados com recorte, conforme conceito de "remendo técnico", removendo a parcela de pavimento degradado.

5.11 Selagem de Trincas

Para o serviço de selagem de trincas, os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela norma DNIT 083/2006 – ES.

6 APRESENTAÇÃO DO PROJETO

O Projeto de Pavimentação e Restauração é composto pelo seguinte conjunto de arquivos:

Tabela 6.1. Arquivos de Projeto

Arquivo	Descrição	Revisão
2101-PAV-RPE-R01	Relatório de Projeto / Unifilar de Fresagem / Fichas Resumo de Soluções	R01
2101-PAV-EX-001-R01	Projeto de Pavimentação - Geral	R01
2101-PAV-EX-002-R01	Projeto de Pavimentação - Seções	R01

7 ANEXOS

A. UNIFILAR DE FRESAGEM

Trecho 1 - EPIA - Sentido Norte (Antes da STN)			Uni	filar de Fresa	gem	
Inicial	Final	km inicial	km final	FE	FM	FD
0+0	0+10	0,000	0,100			х
0+10	0+20	0,100	0,200			
0+20	0+30	0,200	0,300			
0+30	0+40	0,300	0,400			
0+40	0+50	0,400	0,500			
0+50	0+60	0,500	0,600			
0+60	0+70	0,600	0,700	х	х	х
0+70	0+80	0,700	0,800			х
0+80	0+90	0,800	0,900			
0+90	0+0	0,900	1,000			
1+0	1+10	1,000	1,100			
1+10	1+20	1,100	1,200			
1+20	1+25	1,200	1,250			

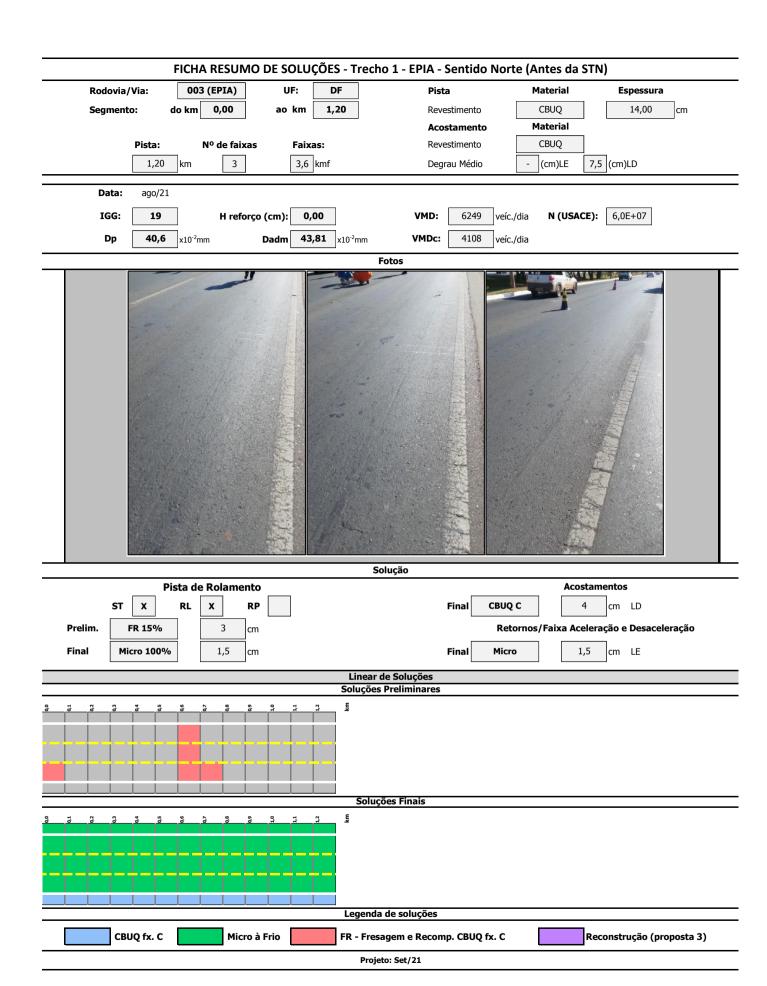
Tabela A.1. Unifilar de Fresagem – Trecho 1

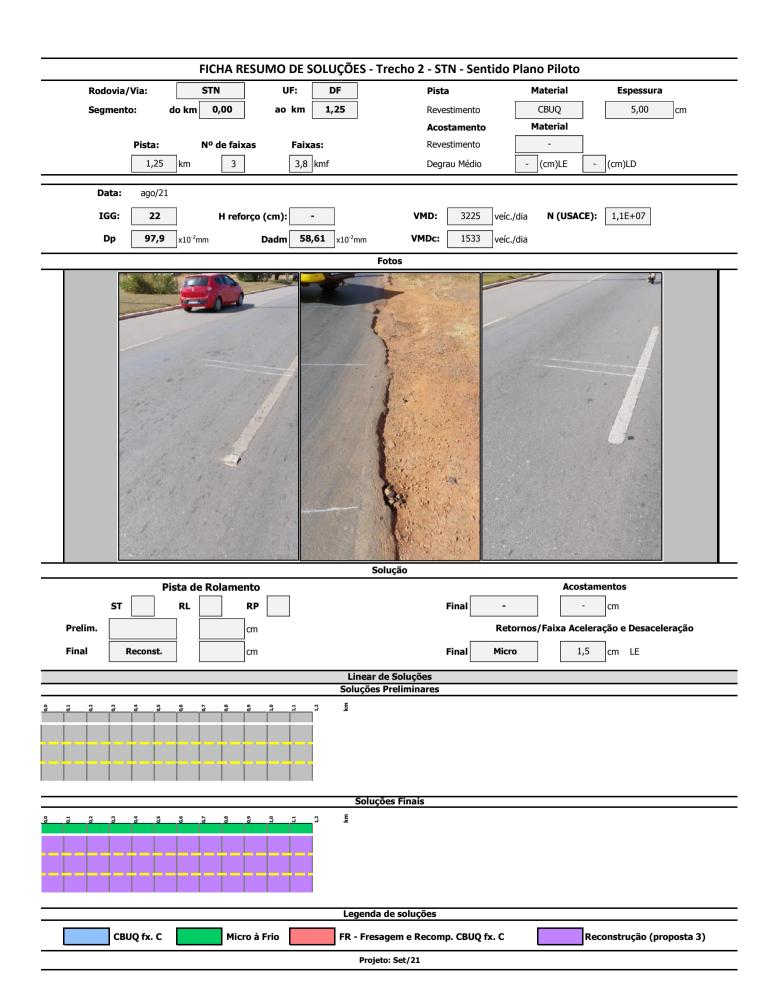
Trecho 2 - STN - Sentido Plano Piloto			Unit	filar de Fresa	gem	
Inicial	Final	km inicial	km final	FE	FM	FD
0+0	0+10	0,000	0,100			
0+10	0+20	0,100	0,200			
0+20	0+30	0,200	0,300			
0+30	0+40	0,300	0,400			
0+40	0+50	0,400	0,500			
0+50	0+60	0,500	0,600			
0+60	0+70	0,600	0,700			
0+70	0+80	0,700	0,800			
0+80	0+90	0,800	0,900			
0+90	1+0	0,900	1,000			
1+0	1+10	1,000	1,100			
1+10	1+20	1,100	1,200			

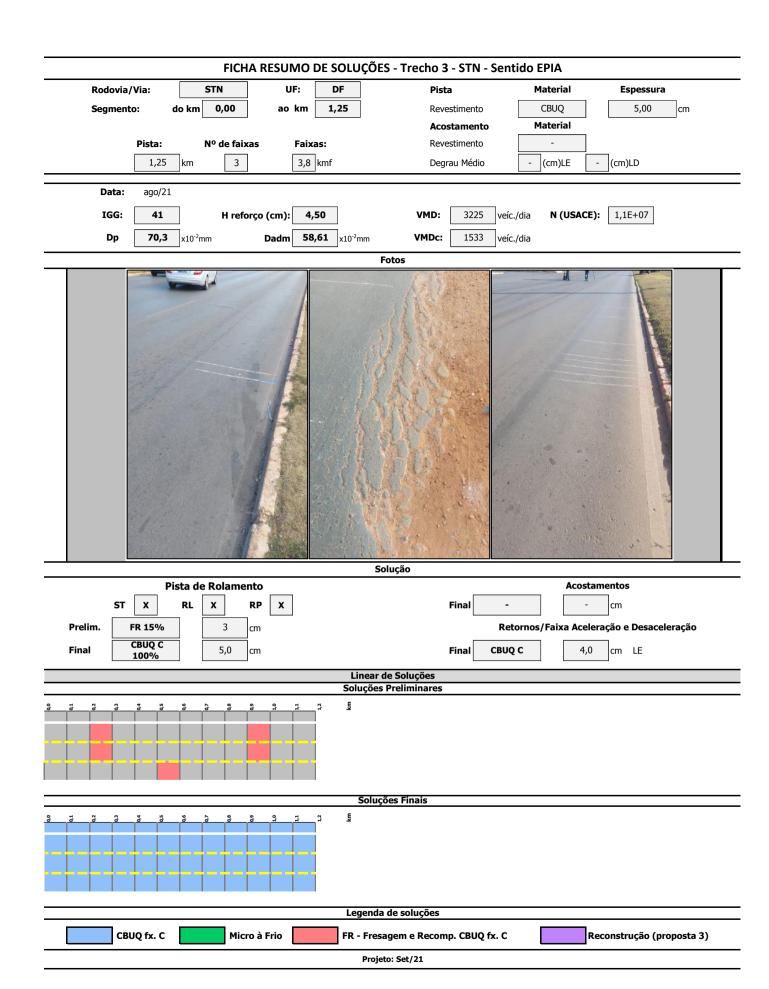
Tabela A.2. Unifilar de Fresagem – Trecho 2

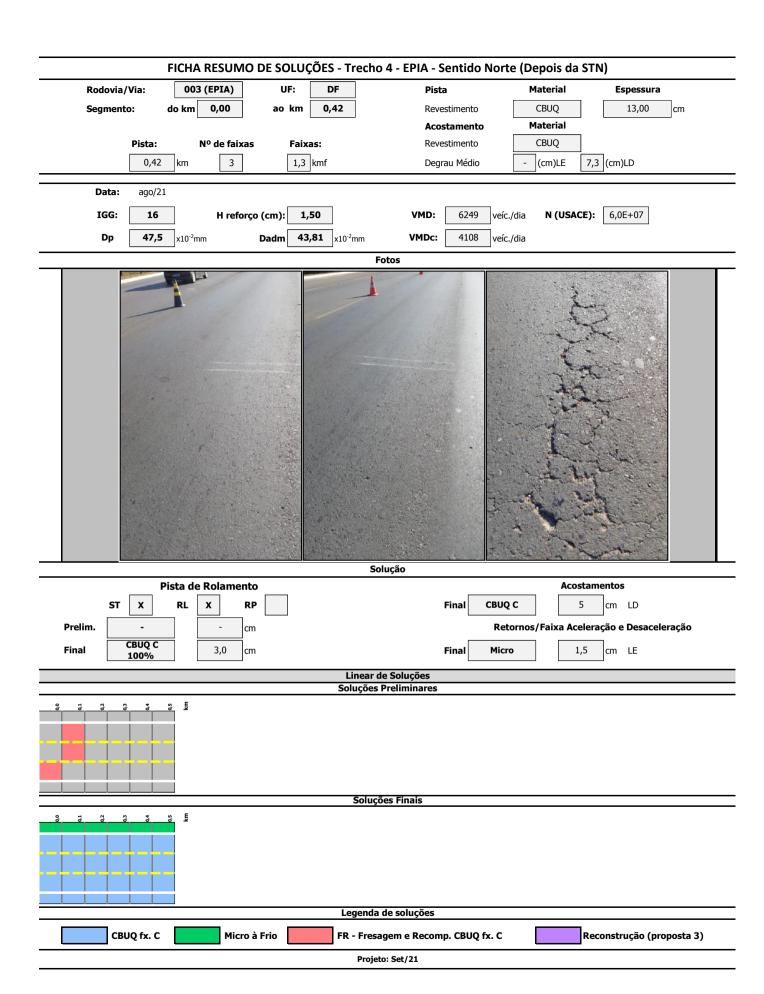
Trecho 3 - STN - Sentido EPIA			Uni	filar de Fresa	gem	
Inicial	Final	km inicial	km final	FE	FM	FD
0+0	0+10	0,000	0,100			
0+10	0+20	0,100	0,200			
0+20	0+30	0,200	0,300	х	х	
0+30	0+40	0,300	0,400			
0+40	0+50	0,400	0,500			
0+50	0+60	0,500	0,600			х
0+60	0+70	0,600	0,700			
0+70	0+80	0,700	0,800			
0+80	0+90	0,800	0,900			
0+90	1+0	0,900	1,000	х	Х	
1+0	1+10	1,000	1,100			
1+10	1+20	1,100	1,200			

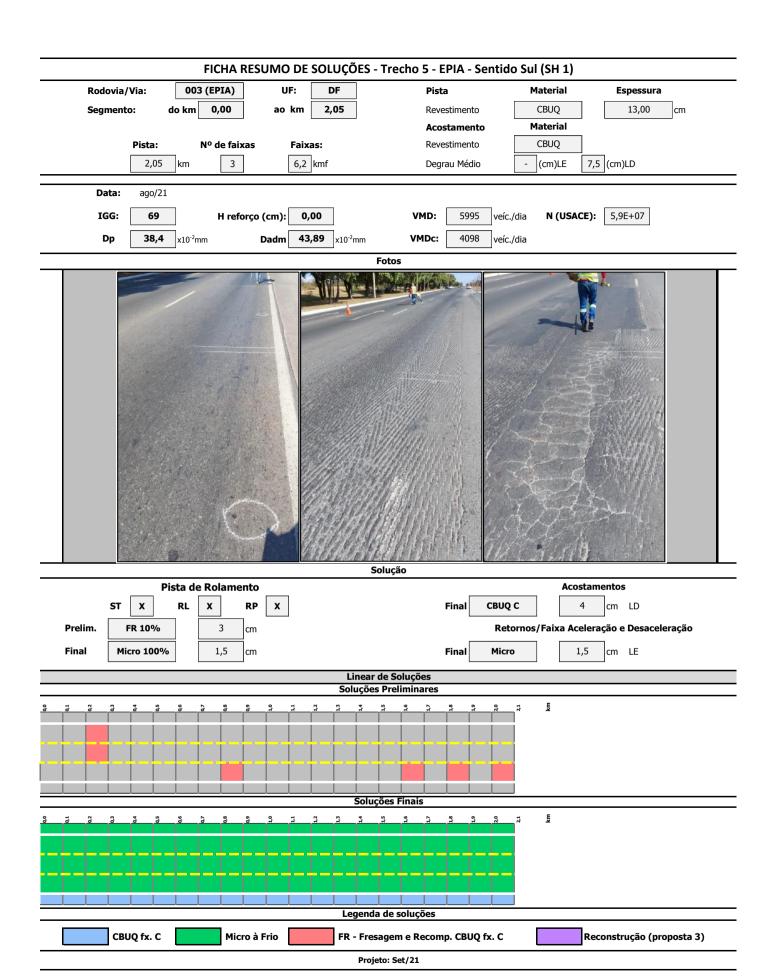
Tabela A.3. Unifilar de Fresagem – Trecho 3

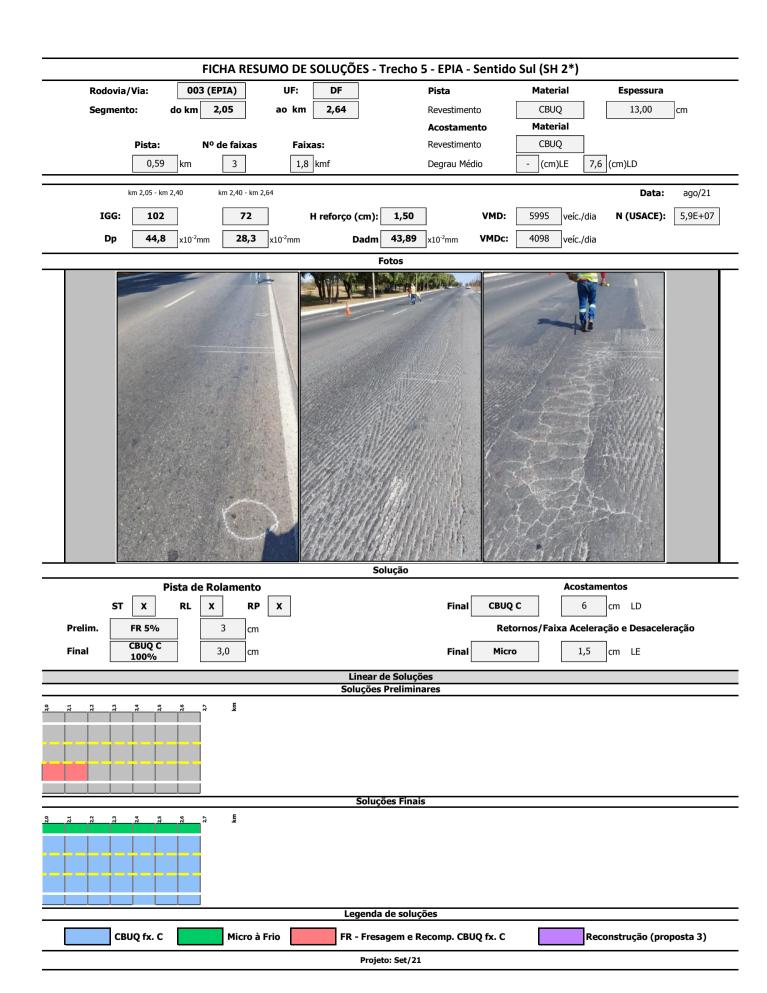

Trecho 4 - EPIA - Sentido Norte (Depois da STN)			Uni	filar de Fresa	igem	
Inicial	Final	km inicial	km final	FE	FM	FD
0+0	0+10	0,000	0,100			х
0+10	0+20	0,100	0,200	х	Х	
0+20	0+30	0,200	0,300			
0+30	0+40	0,300	0,400			
0+40	0+42	0,400	0,420			

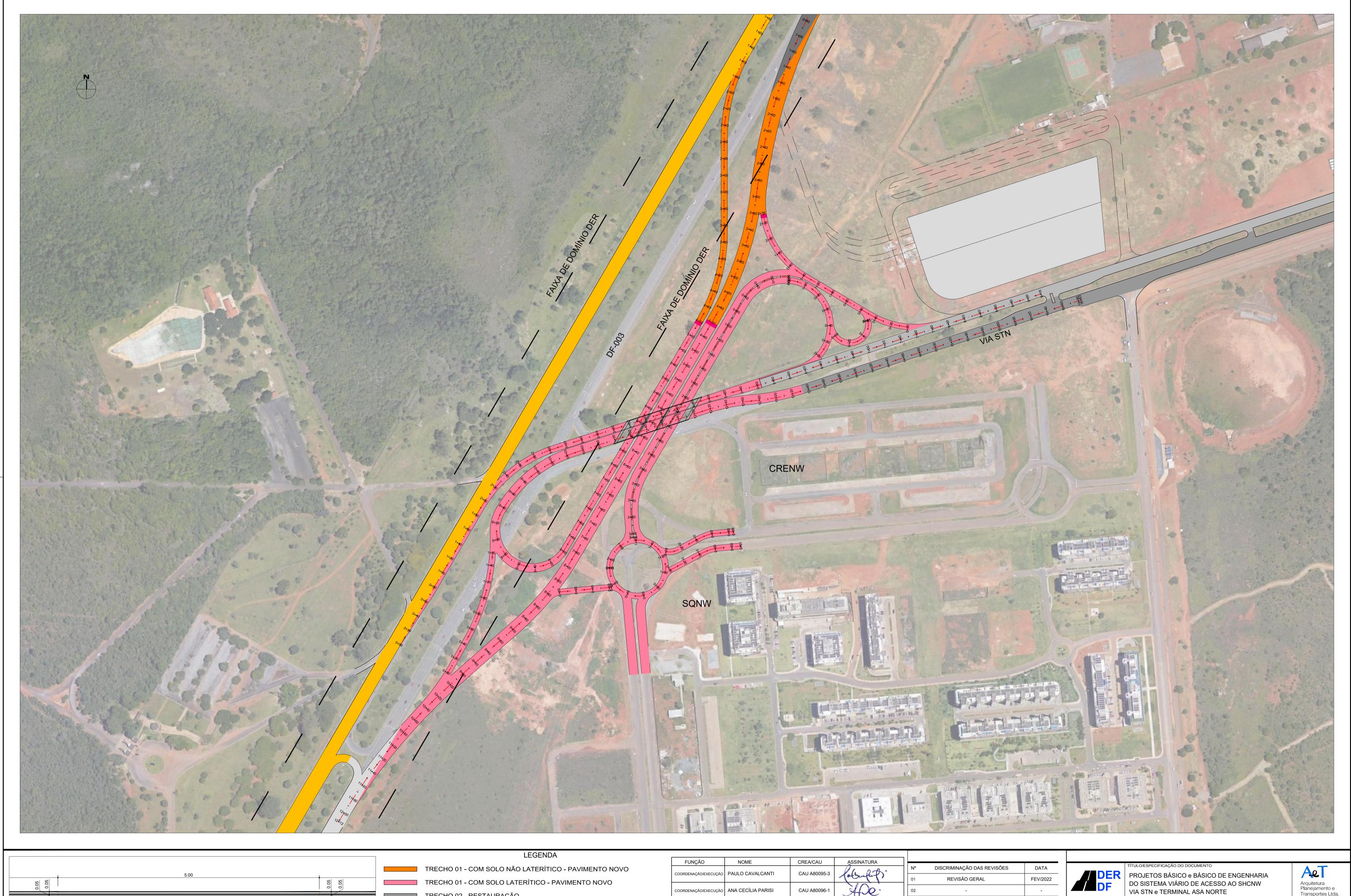

Tabela A.4. Unifilar de Fresagem – Trecho 4

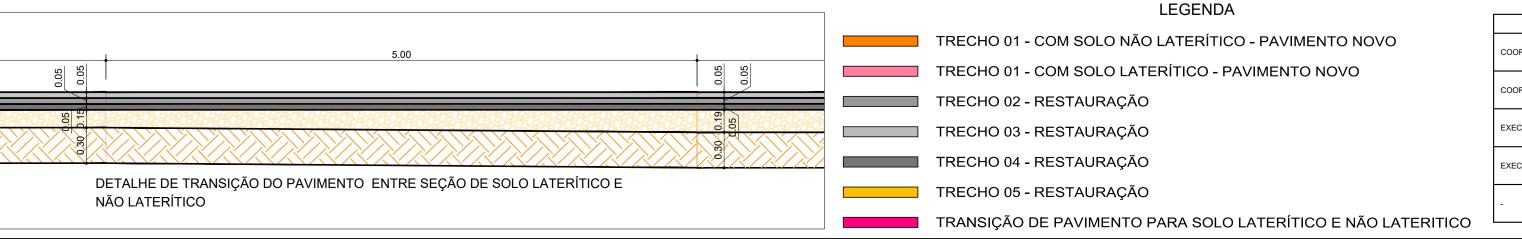

Trecho 5 - EPIA - Sentido Sul			Unif	ilar de Fresa	gem	
Inicial	Final	km inicial	km final	FE	FM	FD
0+0	0+10	0,000	0,100			
0+10	0+20	0,100	0,200			
0+20	0+30	0,200	0,300	х	х	
0+30	0+40	0,300	0,400			
0+40	0+50	0,400	0,500			
0+50	0+60	0,500	0,600			
0+60	0+70	0,600	0,700			
0+70	0+80	0,700	0,800			
0+80	0+90	0,800	0,900			х
0+90	1+0	0,900	1,000			
1+0	1+10	1,000	1,100			
1+10	1+20	1,100	1,200			
1+20	1+30	1,200	1,300			
1+30	1+40	1,300	1,400			
1+40	1+50	1,400	1,500			
1+50	1+60	1,500	1,600			
1+60	1+70	1,600	1,700			х
1+70	1+80	1,700	1,800			
1+80	1+90	1,800	1,900			х
1+90	2+0	1,900	2,000			
2+0	2+10	2,000	2,100			х
2+10	2+20	2,100	2,200			х
2+20	2+30	2,200	2,300			
2+30	2+40	2,300	2,400			
2+40	2+50	2,400	2,500			
2+50	2+60	2,500	2,600			
2+60	2+64	2,600	2,640			


Tabela A.5. Unifilar de Fresagem – Trecho 5

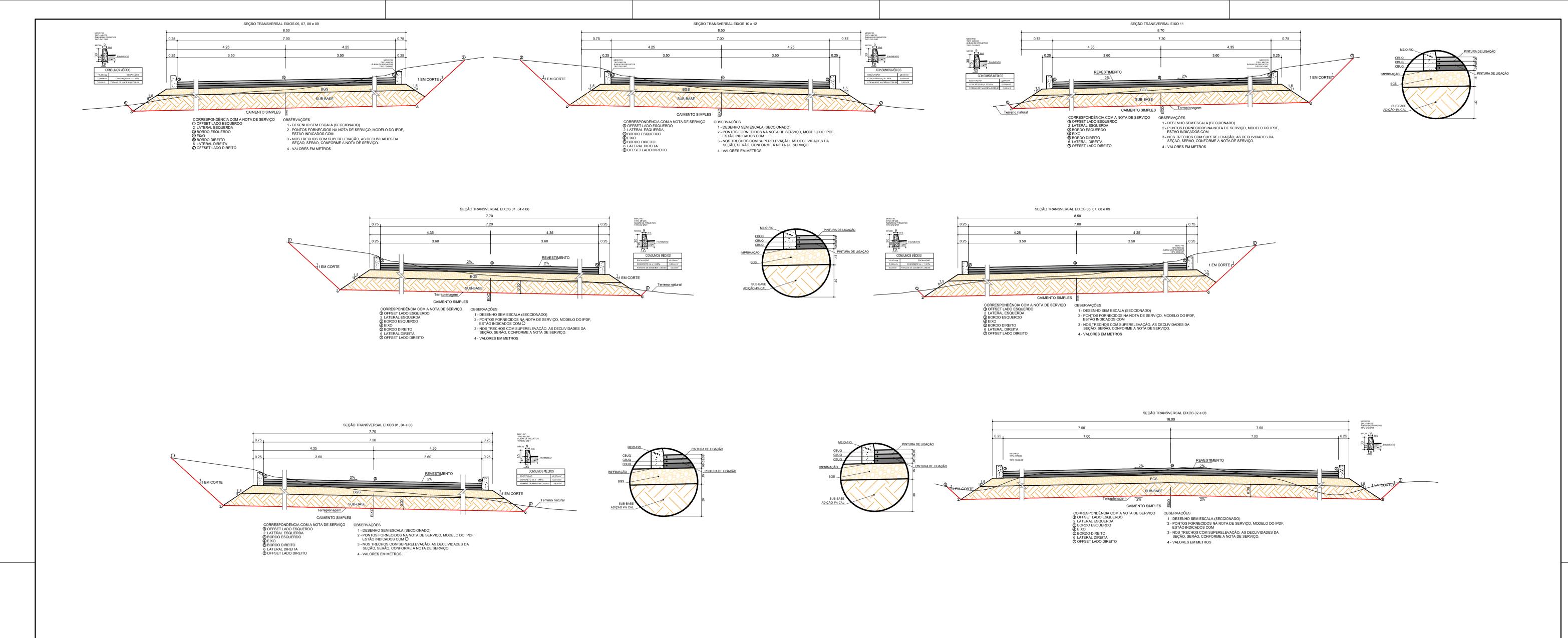

B. FICHAS RESUMO DE SOLUÇÕES

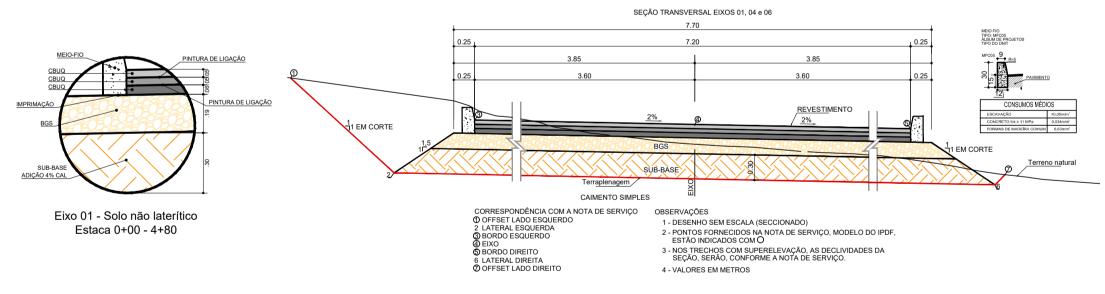






8 PRANCHAS




FUNÇÃO	NOME	CREA/CAU	ASSINATURA	-
COORDENAÇÃO/EXECUÇÃO	PAULO CAVALCANTI	CAU A80095-3	Colombat?	1
COORDENAÇÃO/EXECUÇÃO	ANA CECÍLIA PARISI	CAU A80096-1	Ape:	
EXECUÇÃO	THIAGO NOVAIS	CREA 147.293/D-MG	Me	
EXECUÇÃO	JORDAN PAULO MEROS	CAU A55153-8	John Rule Muses	0
	_	_	7	

N°	DISCRIMINAÇÃO DAS REVISÕES	DATA	
01	REVISÃO GERAL	FEV/2022	
02	-	-	4
03	-	-	
04	-	-	ETAF
05	-	-	ESC
06	-	-	FOLI
CONFERID	D APROVADO VISTO		<u> </u>

	TÍTULO/ESPECIFICAÇÃO DO DOCUMENTO	∧ ₀ T
DER	PROJETOS BÁSICO e BÁSICO DE ENGENHARIA	Ae
DF	DO SISTEMA VIÁRIO DE ACESSO AO SHCNW	Arquitetura Planejamento e
	VIA STN e TERMINAL ASA NORTE	Transportes Ltda

		·
ETAPA DE PROJETO EXECUTIVO	BRASÍLIA	PROJETO PAULO CAVALCANTI
 1:2.000	TRECHO/SUBTRECHO NOROESTE	PROJETO ANA PARISI
FOLHA 01/02	ESPECIALIDADE/SUBESPECIALIDADE PROJETO DE PAVIMENTAÇÃO - GERAL	CÁLCULO/DESENHO JORDAN P. MEROS
revisão 01	2101-PAV-EX-001-R01	DATA FEVEREIRO/2022

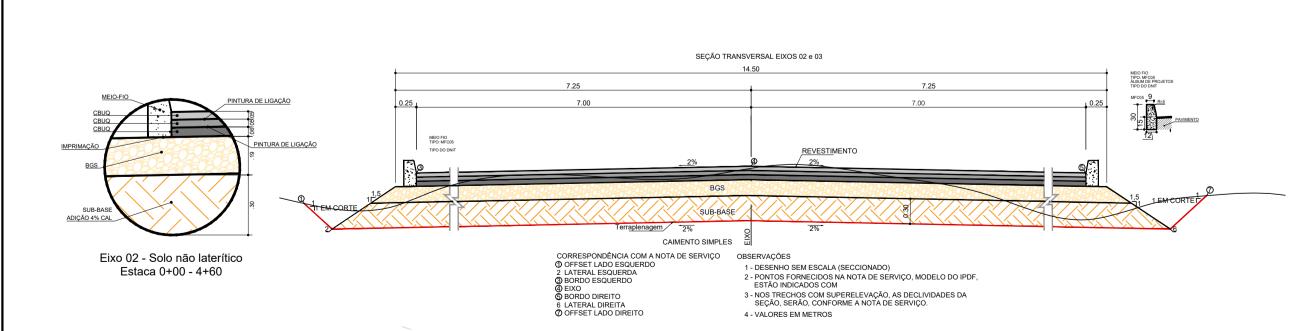


Tabela 3.38. Deflexões admissíveis para Estrutura Proposta 2 (laterítico)

		200 Tab	(
Camada	Ordem construtiva	Deflexão Admissível	Deflexão do Controle Tecnológico
	3ª Camada de 5 cm	37,5 x 10 ⁻² mm	< 37 x 10 ⁻² mm
CBUQ – Capa de Rolamento	2ª Camada de 5 cm	45,8 x 10 ⁻² mm	< 45 x 10 ⁻² mm
	1ª Camada de 6 cm	57,6 x 10 ⁻² mm	< 57 x 10 ⁻² mm
Base	Camada única de 15 cm	71,5 x 10 ⁻² mm	< 71 x 10 ⁻² mm
Cub bass	2ª Camada de 15 cm	94,3 x 10 ⁻² mm	< 94 x 10 ⁻² mm
Sub-base	1ª Camada de 15 cm	118,0 x 10 ⁻² mm	< 118 x 10 ⁻² mm
Subleito	Camada única	128,0 x 10 ⁻² mm	< 128 x 10 ⁻² mm
·		<u> </u>	

Tabela 3.39. Deflexões admissíveis para Estrutura Proposta 3 (não laterítico)

Ordem construtiva	Deflexão Admissível	Deflexão do Controle Tecnológico
3ª Camada de 5 cm	42,3 x 10-2 mm	< 42 x 10 ⁻² mm
2ª Camada de 5 cm	50,7 x 10 ⁻² mm	< 50 x 10 ⁻² mm
1ª Camada de 6 cm	62,5 x 10 ⁻² mm	< 62 x 10 ⁻² mm
Camada única de 19 cm	76,6 x 10 ⁻² mm	< 76 x 10 ⁻² mm
2ª Camada de 15 cm	111,0 x 10 ⁻² mm	< 111 x 10 ⁻² mm
1ª Camada de 15 cm	145,0 x 10 ⁻² mm	< 145 x 10 ⁻² mm
Camada única	166,0 x 10 ⁻² mm	< 166 x 10 ⁻² mm
	3ª Camada de 5 cm 2ª Camada de 5 cm 1ª Camada de 6 cm Camada única de 19 cm 2ª Camada de 15 cm 1ª Camada de 15 cm	Ordem construtiva Admissível 3ª Camada de 5 cm 42,3 x 10-2 mm 2ª Camada de 5 cm 50,7 x 10-2 mm 1ª Camada de 6 cm 62,5 x 10-2 mm Camada única de 19 cm 76,6 x 10-2 mm 2ª Camada de 15 cm 111,0 x 10-2 mm 1ª Camada de 15 cm 145,0 x 10-2 mm

	i	1							
FUNÇÃO	NOME	CREA/CAU	ASSINATURA						
COORDENAÇÃO/EXECUÇÃO	PAULO CAVALCANTI	CAU A80095-3	16 0A	N	° DISCRIMII	NAÇÃO DAS REVISÕE	S	DATA	
			Totalat)	01	REV	ISÃO GERAL		FEV/2022	
COORDENAÇÃO/EXECUÇÃO	ANA CECÍLIA PARISI	CAU A80096-1	Ape:	02	2	-		-	
EXECUÇÃO	THIAGO NOVAIS	CREA 147.293/D-MG	Ma	03	3	-			
LALGOGAG	1111/1001101/110	ONE/ 147.200/B-IVIO	OREX TYTEOGREEM	//-0	04	1	-		-
EXECUÇÃO	JORDAN PAULO MEROS	CAU A55153-8	John Paulo Moss.	05	5	-		-	
			4	06	3	-		-	
-	-	-		CC	ONFERIDO	APROVADO	VIST0		

_			
_	DER DF	TÍTULO/ESPECIFICAÇÃO DO DOCUMENTO PROJETOS BÁSICO e BÁSICO DE ENGENHARIA DO SISTEMA VIÁRIO DE ACESSO AO SHCNW	Arquitetura Planejamento e
-		VIA STN e TERMINAL ASA NORTE	Transportes Ltda.
- 1	ETAPA DE PROJETO	LOCAL	PROJETO
_	BÁSICO	BRASÍLIA	PAULO CAVALCANTI
	1:2.000	TRECHO/SUBTRECHO NOROESTE	PROJETO ANA PARISI
_	FOLHA 02/02	ESPECIALIDADE/SUBESPECIALIDADE PROJETO DE PAVIMENTAÇÃO - SEÇÕES	CÁLCULO/DESENHO JORDAN P. MEROS
	REVISÃO 01	сóріво 2101-PAV-EX-002-R01	DATA FEVEREIRO/2022

Formato A1: 841.00 x 594.00

9 ANOTAÇÃO DE RESPONSABILIDADE TÉCNICA – ARTS

Verificar Autenticidade

1. RESPONSÁVEL TÉCNICO

Nome Civil/Social: PAULO CAVALCANTI DE ALBUQUERQUE

Título Profissional: Arquiteto(a) e Urbanista

CPF: 357.XXX.XXX-34

Nº do Registro: 000A800953

1.1 Empresa Contratada

Razão Social: AeT Arquitetura, Planejamento e Transportes Ltda.

CNPJ: 01.XXX.XXX/0001-50

Nº Registro: PJ17703-2

2. DETALHES DO RRT

Nº do RRT: SI10521574R01CT001 Data de Cadastro: 01/02/2022

Data de Registro: 01/02/2022

Tipologia: Público

Modalidade: RRT SIMPLES

Forma de Registro: RETIFICADOR Forma de Participação: EQUIPE

2.1 Valor do RRT

DOCUMENTO ISENTO DE PAGAMENTO

2.2 Equipe Técnica

Nome Civil/Social

CPF

RRT Vinculado

ANA CECILIA PARISI 308.XXX.XXX-15

3. DADOS DO SERVIÇO/CONTRATANTE

3.1 Serviço 001

Contratante: DEPARTAMENTO DE ESTRADAS DE RODAGEM DO DISTRITO FEDERAL

Tipo: Pessoa jurídica de direito privado Valor do Serviço/Honorários: R\$372.635,45 CPF/CNPJ: 00.XXX.XXX/0001-03 Data de Início: 18/02/2021

Data de Previsão de Término:

20/02/2022

3.1.1 Dados da Obra/Serviço Técnico

CEP: 70620030

Nº: BLOCO C

Logradouro: SAM

Complemento: ED. SEDE DO DER/DF

Bairro: SETORES COMPLEMENTARES

Cidade: BRASÍLIA

UF: DF

Longitude:

Latitude:

3.1.2 Descrição da Obra/Serviço Técnico

Elaboração de Projetos Básico e Executivo de Engenharia, destinados à Implantação e Adequação do Sistema Viário de acesso à Via STN e ao Setor Noroeste pela W9 e W7 (SHCNW trecho 1), na Rodovia DF-003 (EPIA – Estrada Parque Industria e Abastecimento) e o acesso/interligação do Sistema com o TAN – Terminal Asa Norte/BRT Norte, conforme todos os anexos do edital de Tomada de Preços № 006/2020 do Departamento de Estradas de Rodagem do Distrito Federal - DER/DF

3.1.3 Declaração de Acessibilidade

Declaro o atendimento às regras de acessibilidade previstas em legislação e em normas técnicas pertinentes para as

www.caubr.gov.br

Paulo Cavalcanti de Albuquerque

Tourist Macha States

Página 1/2

Verificar Autenticidade

edificações abertas ao público, de uso público ou privativas de uso coletivo, conforme § 1º do art. 56 da Lei nº 13146, de 06 de julho de 2015.

3.1.4 Dados da Atividade Técnica

Grupo: PROJETO

Atividade: 1.8.1 - Levantamento cadastral

Grupo: PROIETO

Atividade: 1.8.8 - Projeto especializado de tráfego e trânsito de veículos e sistemas

de estacionamento

Grupo: PROJETO

Atividade: 1.8.7 - Projeto de sistema viário e acessibilidade

Grupo: PROIETO

Atividade: 1.9.1 - Projeto de movimentação de terra, drenagem e pavimentação

Grupo: PROJETO

Atividade: 1.9.4 - Projeto de sinalização viária

Grupo: PROJETO

Atividade: 1.6.3 - Projeto de arquitetura paisagística

Grupo: PROJETO

Atividade: 1.7.3 - Orçamento

Ouantidade: 280

Unidade: hora

Quantidade: 280

Unidade: hora

Quantidade: 280

Unidade: hora

Quantidade: 280

Unidade: hora

Ouantidade: 280

Unidade: hora

Ouantidade: 280

Unidade: hora

Ouantidade: 280

Unidade: metro quadrado

4. RRT VINCULADO POR FORMA DE REGISTRO

Nº do RRT

Contratante

Forma de Registro

Data de Registro

SI10521574I00CT001

DEPARTAMENTO DE ESTRADAS DE RODAGEM

INICIAL

02/03/2021

DO DISTRITO FEDERAL

RETIFICADOR

01/02/2022

SI10521574R01CT001

DEPARTAMENTO DE ESTRADAS DE RODAGEM DO DISTRITO FEDERAL

5. DECLARAÇÃO DE VERACIDADE

Declaro para os devidos fins de direitos e obrigações, sob as penas previstas na legislação vigente, que as informações cadastradas neste RRT são verdadeiras e de minha responsabilidade técnica e civil.

6. ASSINATURA ELETRÔNICA

Documento assinado eletronicamente por meio do SICCAU do arquiteto(a) e urbanista PAULO CAVALCANTI DE ALBUQUERQUE, registro CAU nº 000A800953, na data e hora: 01/02/2022 12:24:51, com o uso de login e de senha. O CPF/CNPJ está oculto visando proteger os direitos fundamentais de liberdade, privacidade e o livre desenvolvimento da personalidade da pessoa natural (LGPD)

A autenticidade deste RRT pode ser verificada em: https://siccau.eaubr.gov.br/app/view/sight/externo?form=Servicos, ou

via ORCode.

Tavzi Na fu Vi Ofreior Co

A autenticidade deste RRT pode ser verificada em: https://siccau.caubr.gov.br/app/view/sight/externo?form=Servicos, ou via QRCode. Documento Impresso em: 01/02/2022 às 12:25:13 por: siccau, ip 10.128.0.1.

Página 2/2 www.caubr.gov.br

Anotação de Responsabilidade Técnica - ART Lei n° 6.496, de 7 de dezembro de 1977

CREA-DF

ART Obra ou serviço 0720210014471

Conselho Regional de Engenharia e Agronomia do Distrito Federal

1. Responsável Técnico

THIAGO PEIXOTO NOVAIS

Título profissional: Engenheiro Civil

RNP: 1410401294 Registro: 147293/D-MG

Empresa contratada: VOLAR ENGENHARIA LTDA Registro: 14457-DF

2. Dados do Contrato

Contratante: AET ARQUITETURA, PLANEJAMENTO E TRANSPORTES LTDA - EPP

CPF/CNPJ: 01,136,983/0001-50

SEPS 705/905 CEP: 70390-055 Número: 135 Bairro: Asa Sul

Cidade: Brasília UF: DF Complemento:

E-Mail: pcavalbuq@gmail.com Fone: (61)32420564

Contrato: Celebrado em: 18/02/2021 Valor Obra/Serviço R\$: 36.000,00

Vinculada a ART: Tipo de contratante: Pessoa Jurídica de Direito Privado

Ação institucional: Nenhuma/Não Aplicável

3. Dados da Obra/Serviço-

Bairro: Setores SAM Bloco C CEP: 70620-030 Número: 133 Complementares

Cidade: Brasília UF: DF Complemento:

Data de Inicio: 18/02/2021 Previsão término: 18/07/2021 Coordenadas Geográficas:,

Código/Obra pública: Finalidade: Infra-estrutura

Proprietário: Departamento de Estradas de Rodagem do CPF/CNPJ: 00.070.532/0001-03 **Distrito Federal DER**

E-Mail: sutec@der.df.gov.br Fone: (61) 31115500

4. Atividade Técnica

Realização	Quantidade	Unidade	
Projeto Estudos geotécnicos	180,0000	homem hora	
Projeto Executivo Fundações Estaca	180,0000	homem hora	
Projeto Pavimentacao asfáltica	180,0000	homem hora	
Projeto Movimento de Terra Terraplanagem	180,0000	homem hora	
Execução Levantamento topográfico Planialtimétrico	180,0000	homem hora	
Orçamento Sistema Viário	180,0000	homem hora	
Projeto Executivo Drenagem	180,0000	homem hora	
Projeto Viadutos	180,0000	homem hora	
Estudo de Viabilidade Ambiental Qualidade ambiental	180,0000	homem hora	
Projeto Sinalização	180,0000	homem hora	
Projeto Executivo Projeto Geométrico	180,0000	homem hora	
Após a conclusão das atividades técnicas o profissional deverá proceder a baixa desta ART			

5. Observações

Elab. de Proj. Básico e Exec. de Eng., dest. à Impl. e Adequação do Sist.Viário de acesso à Via STN e ao Setor Noroeste pela W9 e W7 (SHCNW trecho 1), na Rod DF-003 (EPIA - Estr. Parque Industria e Abast.) e o acesso/interligação do Sist. com o TAN - Terminal Asa Norte/BRT Norte.

Qualquer conflito ou litígio originado do presente contrato, bem como sua interpretação ou execução, será resolvido por arbitragem, de acordo com a Lei nº 9.307, de 23 de setembro de 1996, nos termos do respectivo regulamento de arbitragem que, expressamente, as partes declaram concordar.

NOVAIS:10154861693 Dados: 2022.02.02 11:20:15-03'00' Profissional

PAULO CAVALCANTI DE Assinado de form DE ALBUQUERQUE:35727578434 Dedos: 2022.02.0 Contratante

Acessibilidade: Sim: Declaro atendimento às regras de acessibilidade, previstas nas normas técnicas da ABNT e no Decreto nº 5.296, de 2 de dezembro

7. Entidade de Classe

SENGE-DF

8. Assinaturas-

Declaro serem verdadeiras as informações acima

Loca Data THIAGO PEIXOTO NOVAIS:10154861693

THIAGO PEIXOTO NOVAIS - CPF: 101.548.616-93 PAULO CAVALCANTI DE ALBUQUERQUE:35727578434

AET ARQUITETURA, PLANEJAMENTO E TRANSPORTES LTDA - EPP -CPF/CNPJ: 01.136.983/0001-50

9. Informações

- A ART é válida somente quando quitada, mediante apresentação do comprovante de pagamento ou conferência no site do Crea.

 - A autenticidade deste documento pode ser verificada no site
- www.creadf.org.br
- A guarda da via assinada da ART será de responsabilidade do profissional e do contratante com o objetivo de documentar o vínculo contratual.

www.creadf.org.br informacao@creadf.org.br Tel: (61) 3961-2800 Fax:

(R) CREA-DF

Valor da ART: R\$ 233.94

Registrada em: 01/03/2021

Valor Pago: R\$ 233,94

Nosso Número/Baixa: 0121012754

Anotação de Responsabilidade Técnica - ART Lei n° 6.496, de 7 de dezembro de 1977

CREA-DF

ART Obra ou serviço 0720210014472

Conselho Regional de Engenharia e Agronomia do Distrito Federal

1. Responsável Técnico

RENATO GRILLO ELY

Título profissional: Engenheiro Civil

RNP: 2204789143 Registro: 13611/D-RS

2. Dados do Contrato-

Contratante: AeT ARQUITETURA, PLANEJAMENTO E TRANSPORTES LTDA-EPP CPF/CNPJ: 01.136.983/0001-50

SEPS 705/905 CEP: 70390-055 Número: 135 Bairro: Asa Sul

UF: DF Cidade: Brasília Complemento: Bloco A Ed. Santa Cruz

E-Mail: pcavalbuq@gmail.com Fone: (61)32420564

Contrato: Celebrado em: 18/02/2021 Valor Obra/Serviço R\$: 42.000,00

Vinculada a ART: Tipo de contratante: Pessoa Jurídica de Direito Privado

Ação institucional: Nenhuma/Não Aplicável

3. Dados da Obra/Serviço –

Bairro: Setores SAM Bloco C Número: 133 CEP: 70620-030 Complementares

UF: DF Cidade: Brasília Complemento:

Data de Inicio: 18/02/2021 Previsão término: 18/07/2021 Coordenadas Geográficas:,

Finalidade: Infra-estrutura Código/Obra pública: 710.390-055

Proprietário: Departamento de Estradas de Rodagem do

Distrito Federal DER

CPF/CNPJ: 00.070.532/0001-03

E-Mail: sutec@der.df.gov.br Fone: (61) 31115500

·4. Atividade Técnica·

Coordenação	Quantidade	Unidade	
Projeto Movimento de Terra Terraplanagem	280,0000	homem hora	
Projeto Sinalização	280,0000	homem hora	
Execução Estudos geotécnicos	280,0000	homem hora	
Projeto Pavimentacao asfáltica	280,0000	homem hora	
Estudo de Viabilidade Ambiental Qualidade ambiental	280,0000	homem hora	
Projeto Fundações Estaca	280,0000	homem hora	
Projeto Estrutura Concreto Protendido	280,0000	homem hora	
Execução Levantamento topográfico Planialtimétrico	280,0000	homem hora	
Projeto Geométrico	280,0000	homem hora	
Realização	Quantidade	Unidade	
Projeto Executivo Drenagem	280,0000	homem hora	
Orçamento Sistema Viário	280,0000	homem hora	
Após a conclusão das atividades técnicas o profissional deverá proceder a baixa desta ART			

5. Observações

Elab. de Proj. Básico e Exec. de Eng., dest. à Impl. e Adequação do Sist.Viário de acesso à Via STN e ao Setor Noroeste pela W9 e W7 (SHCNW trecho 1), na Rod.DF-003 (EPIA – Estr. Parque Industria e Abast.) e o acesso/interligação do Sist. com o TAN - Terminal Asa Norte/BRT Norte.

Qualquer conflito ou litígio originado do presente contrato, bem como sua interpretação ou execução, será resolvido por arbitragem, de acordo com a Lei nº 9.307, de 23 de setembro de 1996, nos termos do respectivo regulamento de arbitragem que, expressamente, as partes declaram concordar.

RENATO GRILLO Assinado de forma digital por EEX:27878945004 Dados: 2022.02.02 11:19:26 -03:00′

Profissional

PAULO CAVALCANTI DE
ALBUQUERQUE:35727578434
Assinado de
CAVALCANTI
Dados: 2022.

Contratante

Acessibilidade: Sim: Declaro atendimento às regras de acessibilidade, previstas nas normas técnicas da ABNT e no Decreto nº 5.296, de 2 de dezembro de 2004.

7. Entidade de Classe

NENHUMA

Declaro serem verdadeiras as informações acima

Local Assimado de forma tiligital por RENATO GRILLO ELY:27878945004 ELY:227878945004 Dados: 2022.2020 11:19:49-0300'

RENATO GRILLO ELY - CPF: 278.789.450-04

PAULO CAVALCANTI DE ALBUQUEROUE:35727578434

AeT ARQUITETURA, PLANEJAMENTO E TRANSPORTES LTDA-EPP -

CPF/CNPJ: 01.136.983/0001-50

9. Informações

- A ART é válida somente quando quitada, mediante apresentação do comprovante de pagamento ou conferência no site do Crea.

- A autenticidade deste documento pode ser verificada no site: www.creadf.org.br

- A guarda da via assinada da ART será de responsabilidade do profissional e do contratante com o objetivo de documentar o vínculo contratual.

www.creadf.org.br informacao@creadf.org.br Tel: (61) 3961-2800 Fax:

Valor da ART: R\$ 233.94

Registrada em: 01/03/2021

Valor Pago: R\$ 233,94

Nosso Número/Baixa: 0121012756

Verificar Autenticidade

1. RESPONSÁVEL TÉCNICO

Nome Civil/Social: ANA CECILIA PARISI Título Profissional: Arquiteto(a) e Urbanista CPF: 308.XXX.XXX-15 Nº do Registro: 000A800961

1.1 Empresa Contratada

Razão Social: AeT Arquitetura, Planejamento e Transportes Ltda.

CNPJ: 01.XXX.XXX/0001-50 Nº Registro: PI17703-2

2. DETALHES DO RRT

Nº do RRT: SI10521811R01CT001 Data de Cadastro: 01/02/2022 Data de Registro: 01/02/2022

Tipologia: Público

Modalidade: RRT SIMPLES

Forma de Registro: RETIFICADOR Forma de Participação: EQUIPE

2.1 Valor do RRT

DOCUMENTO ISENTO DE PAGAMENTO

2.2 Equipe Técnica

Nome Civil/Social

PAULO CAVALCANTI DE ALBUQUERQUE

CPF

357.XXX.XXX-34

RRT Vinculado

3. DADOS DO SERVIÇO/CONTRATANTE

3.1 Serviço 001

Contratante: Departamento de Estradas de Rodagem do Distrito Federal

Tipo: Órgão Público

Valor do Serviço/Honorários: R\$372.635,45

CPF/CNPI: 00.XXX.XXX/0001-03

Data de Início: 18/02/2021 Data de Previsão de Término:

20/02/2022

3.1.1 Dados da Obra/Serviço Técnico

CEP: 70610600

Logradouro: SAM

Nº: Bloco C

Cidade: BRASÍLIA

Complemento: Edifício Sede DER/DF

Bairro: SETOR DE ADMINISTRACAO

MUNICIPAL

UF: DF

Longitude:

Latitude:

3.1.2 Descrição da Obra/Serviço Técnico

Elaboração de Projetos Básico e Executivo de Engenharia, destinados à Implantação e Adequação do Sistema Viário de acesso à Via STN e ao Setor Noroeste pela W9/e W7 (SHCNW trecho 1), na Rodovia DF-003 (EPIA - Estrada Parque Industria e Abastecimento) e o acesso/interligação do Sistema com o TAN - Terminal Asa Norte/BRT Norte, conforme todos os anexos do edital de Tomada de Preços Nº 006/202 do Departamento de Estradas de Rodagem do Distrito Federal - DER/DF.

Ana Cecilia Parisi CAU A80096-1

Tavzi Valin Direton Se.

www.caubr.gov.br

Página 1/2

Verificar Autenticidade

3.1.3 Declaração de Acessibilidade

Declaro o atendimento às regras de acessibilidade previstas em legislação e em normas técnicas pertinentes para as edificações abertas ao público, de uso público ou privativas de uso coletivo, conforme § 1º do art. 56 da Lei nº 13146, de 06 de julho de 2015.

3.1.4 Dados da Atividade Técnica

Grupo: PROIETO

Atividade: 1.8.1 - Levantamento cadastral

Grupo: PROJETO

Atividade: 1.8.8 - Projeto especializado de tráfego e trânsito de veículos e sistemas

de estacionamento

Grupo: PROJETO

Atividade: 1.8.7 - Projeto de sistema viário e acessibilidade

Grupo: PROJETO

Atividade: 1.9.1 - Projeto de movimentação de terra, drenagem e pavimentação

Grupo: PROJETO

Atividade: 1.9.4 - Projeto de sinalização viária

Grupo: PROJETO

Atividade: 1.6.3 - Projeto de arquitetura paisagística

Grupo: PROJETO

Atividade: 1.7.3 - Orçamento

Ouantidade: 280

Unidade: hora

Quantidade: 280

Unidade: hora

Ouantidade: 280

Unidade: hora

Ouantidade: 280

Unidade: hora

Ouantidade: 280

Unidade: hora

Ouantidade: 280

Unidade: hora

Quantidade: 280

Unidade: hora

4. RRT VINCULADO POR FORMA DE REGISTRO

Nº do RRT

Contratante

Forma de Registro

Data de Registro

Departamento de Estradas de Rodagem do Distrito Federal

INICIAL

02/03/2021

SI10521811R01CT001

SI10521811I00CT001

Departamento de Estradas de Rodagem do RETIFICADOR

Distrito Federal

01/02/2022

5. DECLARAÇÃO DE VERACIDADE

Declaro para os devidos fins de direitos e obrigações, sob as penas previstas na legislação vigente, que as informações cadastradas neste RRT são verdadeiras e de minha responsabilidade técnica e civil.

6. ASSINATURA ELETRÔNICA

Documento assinado eletronicamente por meio do SICCAU do arquiteto(a) e urbanista ANA CECILIA PARISI, registro CAU nº 000A800961, na data e hora: 01/02/2022 12:07:23, com o uso de login e de senha. O CPF/CNPJ está oculto visando proteger os direitos fundamentais de liberdade, privacidade e o livre desenvolvimento da personalidade da pessoa natural

(LGPD) A autenticidade deste RRT pode ser verificada en: https://siccau.caubr.gov.br/app/view/sight/externo?form=Servicos, ou via QRCode.

Ana Cedilia Parisi CAU A80096-1

Trizi Valia Official Cecal

A autenticidade deste RRT pode ser verificada em: https://siccau.caubr.gov.br/app/view/sight/externo?form=Servicos, ou via QRCode. Documento Impresso em: 01/02/2022 às 12:07:38 por: siccau, ip 10.128.0.1.

Página 2/2 www.caubr.gov.br

Verificar Autenticidade

1. RESPONSÁVEL TÉCNICO

Nome Civil/Social: JORDAN PAULO MEROS Título Profissional: Arquiteto(a) e Urbanista

CPF: 044.XXX.XXX-12

Nº do Registro: 000A551538

2. DETALHES DO RRT

Nº do RRT: SI10526224R01CT001 Data de Cadastro: 01/02/2022 Data de Registro: 01/02/2022

Tipologia: Público

Modalidade: RRT SIMPLES

Forma de Registro: RETIFICADOR Forma de Participação: INDIVIDUAL

2.1 Valor do RRT

DOCUMENTO ISENTO DE PAGAMENTO

3. DADOS DO SERVIÇO/CONTRATANTE

3.1 Serviço 001

Contratante: AeT Arquitetura, Planejamento e Transportes Ltda.

Tipo: Pessoa jurídica de direito privado Valor do Serviço/Honorários: R\$34.000,00 CPF/CNPJ: 01.XXX.XXX/0001-50
Data de Início: 18/02/2021
Data de Previsão de Término:

20/02/2022

3.1.1 Dados da Obra/Serviço Técnico

CEP: 70620030

Nº: BLOCO C

Logradouro: SAM BLOCO C

Complemento: ED SEDE DO DER DF

Bairro: SETORES COMPLEMENTARES

Cidade: BRASÍLIA

UF: DF

Longitude:

Latitude:

3.1.2 Descrição da Obra/Serviço Técnico

Elaboração de Projetos Básico e Executivo de Engenharia, destinados à Implantação e Adequação do Sistema Viário de acesso à Via STN e ao Setor Noroeste pela W9 e W7 (SHCNW trecho 1), na Rodovia DF-003 (EPIA – Estrada Parque Industria e Abastecimento) e o acesso/interligação do Sistema com o TAN – Terminal Asa Norte/BRT Norte, conforme todos os anexos do edital de Tomada de Preços Nº 006/2020 do Departamento de Estradas de Rodagem do Distrito Federal – DER/DF

3.1.3 Declaração de Acessibilidade

Declaro o atendimento às regras de acessibilidade previstas em legislação e em normas técnicas pertinentes para as edificações abertas ao público, de uso público ou privativas de uso coletivo, conforme § 1º do art. 56 da Lei nº 13146, de 06 de julho de 2015.

3.1.4 Dados da Atividade Técnica

Grupo: PROJETO

Atividade: 1.8.1 - Levantamento cadastral

Grupo: PROJETO

Atividade: 1.8.8 - Projeto especializado de tráfego e trânsito de veículos e sistemas

de estacionamento

Quantidade: 280 Unidade: hora

Quantidade: 280

Unidade: hora

(M)

Verificar Autenticidade

Grupo: PROIETO

Atividade: 1.8.7 - Projeto de sistema viário e acessibilidade

Grupo: PROIETO

Atividade: 1.9.1 - Projeto de movimentação de terra, drenagem e pavimentação

Grupo: PROJETO

Atividade: 1.9.4 - Projeto de sinalização viária

Grupo: PROJETO

Atividade: 1.6.3 - Projeto de arquitetura paisagística

Grupo: PROIETO

Atividade: 1.7.3 - Orçamento

Ouantidade: 280

Unidade: hora

Quantidade: 280

Unidade: hora

Ouantidade: 280

Unidade: hora

Quantidade: 280

Unidade: hora

Ouantidade: 280

Unidade: hora

4. RRT VINCULADO POR FORMA DE REGISTRO

Nº do RRT

Contratante

Forma de Registro

Data de Registro

SI10526224I00CT001

SI10526224R01CT001

AeT Arquitetura, Planejamento e Transportes

INICIAL

03/03/2021

Ltda.

AeT Arquitetura, Planejamento e Transportes Ltda.

RETIFICADOR

01/02/2022

5. DECLARAÇÃO DE VERACIDADE

Declaro para os devidos fins de direitos e obrigações, sob as penas previstas na legislação vigente, que as informações cadastradas neste RRT são verdadeiras e de minha responsabilidade técnica e civil.

6. ASSINATURA ELETRÔNICA

Documento assinado eletronicamente por meio do SICCAU do arquiteto(a) e urbanista JORDAN PAULO MEROS, registro CAU nº 000A551538, na data e hora: 01/02/2022 12:35:11, com o uso de login e de senha. O CPF/CNPJ está oculto visando proteger os direitos fundamentais de liberdade, privacidade e o livre desenvolvimento da personalidade da pessoa natural

A autenticidade deste RRT pode ser verificada em: https://siccau.caubr.gov.br/app/view/sight/externo?form=Servicos, ou via QRCode.

Cavalcanti de Albuquerque

John Ralo Mr

A autenticidade deste RRT pode ser verificada em: https://siccau.caubr.gov.br/app/view/sight/externo?form=Servicos, ou via QRCode. Documento Impresso em: 01/02/2022 às 12:35:17 por: siccau, ip 10.128.0.1.

www.caubr.gov.br Página 2/2

Anotação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977

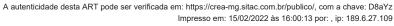
ART OBRA / SERVIÇO Nº MG20220923253

Conselho Regional de Engenharia e Agronomia de Minas Gerais

INICIAL

1. Responsável Técnico **GERALDO AUGUSTO NOVAIS** Título profissional: ENGENHEIRO CIVIL RNP: 1404049916 Registro: MG0000030616D MG 2. Dados do Contrato Contratante: AeT Arquitetura Planejamento e Transportes LTDA CPF/CNPJ: 01.136.983/0001-50 **QUADRA SEPS 705/905** Nº: 135 Complemento: Edifício Santa Cruz, Salas 135, 137, 138 e 139 Bairro: ASA SUL Cidade: BRASÍLIA UF: DF CEP: 70390055 Contrato: Não especificado Celebrado em: Valor: R\$ 25.000,00 Tipo de contratante: Pessoa Juridica de Direito Privado Ação Institucional: Outros 3. Dados da Obra/Serviço SETOR SAM BLOCO C Nº: S/N Complemento: Bairro: SETORES COMPLEMENTARES Cidade: BRASÍLIA UF: DF CEP: 70620030 Data de Início: 01/03/2021 Coordenadas Geográficas: -15.777153, -47.904260 Previsão de término: 30/04/2022 Finalidade: INFRAESTRUTURA Código: Não Especificado Proprietário: DEPARTAMENTO DE ESTRADAS DE RODAGEM DO DISTRITO FEDERAL -CPF/CNPJ: 00.070.532/0001-03 DER/DF 4. Atividade Técnica

- Elaboração	Quantidade	Unidade
40 - Estudo > GEOTECNIA E GEOLOGIA DA ENGENHARIA > SONDAGENS > DE SONDAGEM GEOTÉCNICA > #3.2.1.1 - A TRADO	150,00	hh
40 - Estudo > GEOTECNIA E GEOLOGIA DA ENGENHARIA > SONDAGENS > DE SONDAGEM GEOTÉCNICA > #3.2.1.2 - A PERCUSSÃO	150,00	hh
40 - Estudo > MEIO AMBIENTE > GESTÃO AMBIENTAL > #7.6.6 - DE ESTUDOS AMBIENTAIS	150,00	hh
80 - Projeto > GEOTECNIA E GEOLOGIA DA ENGENHARIA > OBRAS DE TERRA > DE OBRAS DE TERRA > #3.3.1.9 - TERRAPLENAGEM	150,00	hh
80 - Projeto > ESTRUTURAS > FUNDAÇÕES > DE FUNDAÇÕES PROFUNDAS > #2.9.2.3 - EM ESTACAS DE CONCRETO MOLDADAS IN LOCO	150,00	hh
80 - Projeto > ESTRUTURAS > OBRAS DE ARTE > #2.6.2 - DE VIADUTOS	150,00	hh
80 - Projeto > TRANSPORTES > INFRAESTRUTURA RODOVIÁRIA > #4.1.2 - DE PAVIMENTAÇÃO ASFÁLTICA PARA RODOVIAS	150,00	hh
80 - Projeto > TRANSPORTES > INFRAESTRUTURA URBANA > DE PAVIMENTAÇÃO > #4.2.1.2 - ASFÁLTICA PARA VIAS URBANAS	150,00	hh
80 - Projeto > OBRAS HIDRÁULICAS E RECURSOS HÍDRICOS > SISTEMAS DE DRENAGEM PARA OBRAS CIVIS > DE SISTEMAS DE DRENAGEM PARA OBRAS CIVIS > #5.3.1.2 - BUEIRO	150,00	hh
80 - Projeto > OBRAS HIDRÁULICAS E RECURSOS HÍDRICOS > SISTEMAS DE DRENAGEM PARA OBRAS CIVIS > DE SISTEMAS DE DRENAGEM PARA OBRAS CIVIS > #5.3.1.5 - DRENO	150,00	hh
80 - Projeto > OBRAS HIDRÁULICAS E RECURSOS HÍDRICOS > SISTEMAS DE DRENAGEM PARA OBRAS CIVIS > DE SISTEMAS DE DRENAGEM PARA OBRAS CIVIS > #5.3.1.7 - MEIO-FIO	150,00	hh
80 - Projeto > TRANSPORTES > INFRAESTRUTURA RODOVIÁRIA > #4.1.5 - DE TRAÇADO VIÁRIO PARA RODOVIAS	150,00	hh
80 - Projeto > TRANSPORTES > INFRAESTRUTURA URBANA > $\#4.2.2$ - DE INFRAESTRUTURA PARA VIAS URBANAS	150,00	hh
80 - Projeto > TRANSPORTES > SINALIZAÇÃO > DE SINALIZAÇÃO > #4.9.1.5 - RODOVIÁRIA	150,00	hh
80 - Projeto > ESTRUTURAS > FUNDAÇÕES > DE FUNDAÇÕES PROFUNDAS > #2.9.2.2 - EM ESTACAS DE CONCRETO PRÉ-MOLDADO	150,00	hh
67 - Levantamento > TOPOGRAFIA > LEVANTAMENTOS TOPOGRÁFICOS BÁSICOS > DE LEVANTAMENTO TOPOGRÁFICO > #33.1.1.3 - PLANIALTIMÉTRICO	150,00	hh
35 - Elaboração de orçamento > TRANSPORTES > INFRAESTRUTURA RODOVIÁRIA > #4.1.3 - DE INFRAESTRUTURA RODOVIÁRIA	150,00	hh
35 - Elaboração de orçamento > TRANSPORTES > INFRAESTRUTURA URBANA > #4.2.2 - DE INFRAESTRUTURA PARA VIAS URBANAS	150,00	hh


Após a conclusão das atividades técnicas o profissional deve proceder a baixa desta ART

5. Observações _

-03'00'

Anotação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977

CREA-MG

ART OBRA / SERVIÇO Nº MG20220923253

Conselho Regional de Engenharia e Agronomia de Minas Gerais

INICIAL

Elaboração de projeto básico e executivo de engenharia, destinado a implantação e adequação do sistema viário de acesso à Via STN, e ao Setor Noroeste pela W9 e W7, na Rodovia DF-003 (EPIA), e acesso/interligação com o Terminal Asa Norte (TAN)

6 Declarações

- A Resolução nº 1.094/17 instituiu o Livro de Ordem de obras e serviços que será obrigatório para a emissão de Certidão de Acervo Técnico CAT aos responsáveis pela execução e fiscalização de obras iniciadas a partir de 1º de janeiro de 2018. (Res. 1.094, Confea) .
- Declaro que estou cumprindo as regras de acessibilidade previstas nas normas técnicas da ABNT, na legislação específica e no decreto n. 5296/2004
- Cláusula Compromissória: Qualquer conflito ou litígio originado do presente contrato, bem como sua interpretação ou execução, será resolvido por arbitragem, de acordo com a Lei no. 9.307, de 23 de setembro de 1996, por meio do Centro de Mediação e Arbitragem CMA vinculado ao Crea-MG, nos termos do respectivo regulamento de arbitragem que, expressamente, as partes declaram concordar

7. Entidade de Class	e	
- SEM INDICAÇÃO DE ENT	TIDADE DE CLASSE	GERALDO AUGUSTO Assinado de forma digital por GERALDO AUGUSTO NOVAIS:27445682600
8. Assinaturas		NOVAIS:27445682600 Dados: 2022.02.16 15:11:15 -03'00'
Declaro serem verdadeiras a	is informações acima	GERALDO AUGUSTO NOVAIS - CPF: 274.456.826-00
Brasília 16	defevereiro de20	PAULO CAVALCANTI DE Asiando de forma digital por PAULO CAVALCANTI DE ALBUQUERQUE:35727578434 Dados: 2022.02.16 15:59:39-0300'
Local data		AeT Arquitetura Planejamento e Transportes LTDA - CNPJ: 01.136.983/0001-50
9. Informações		
* A ART é válida somente qu	ıando quitada, mediante apresentaçã	ão do comprovante do pagamento ou conferência no site do Crea.
* O comprovante de pagame	nto deverá ser apensado para compi	rovação de quitação
10. Valor		
Valor da ART: R\$ 233,94	Registrada em: 15/02/2022	Valor pago: R\$ 219,91 Nosso Número: 8597634182

Anotação de Responsabilidade Técnica - ART Lei n° 6.496, de 7 de dezembro de 1977

CREA-DF

ART Obra ou serviço 0720220012725

Conselho Regional de Engenharia e Agronomia do Distrito Federal

1. Responsável Técnico				
VINICIUS RESENDE DOMINGUES Título profissional: Engenheiro Civil	RNP: 0712898409 Registro: 21229/D-DF			
Empresa contratada: VPL ENGENHARIA LTDA Registro:	15349-DF			
2. Dados do Contrato				
Contratante: AeT ARQUITETURA, PLANEJAMENTO E EPP	TRANSPORTES LTDA- CPF/CNPJ: 01.136.983/0001-50			
Cidade: Brasília UF: DF	Bairro: Asa Sul CEP: 70390-055 Complemento: Bloco A Ed. Santa Cruz Fone: (61)32420564			
Contrato:	Valor Obra/Serviço R\$: 6.000,00			
Vinculada a ART: Ação institucional: Nenhuma/Não Aplicável	Cipo de contratante: Pessoa Jurídica de Direito Privado			
3. Dados da Obra/Serviço				
Data de Início: 12/07/2021 Previsão término: 31/03/20	Coordenadas Geográficas: -15.739244743366163,-47.91622998026479			
Finalidade: Infra-estrutura Proprietário: DEPARTAMENTO DE ESTRADAS E RODA DO DIST FEDERAL-DER/DF	Código/Obra pública: CPF/CNPJ: 00.070.532/0001-03			
E-Mail: ouvidoria@der.df.gov.br	Fone: (61) 31115000			
1º Endereço SRTVS SRTVS Bairro: Asa Sul Complemento: Quadra 701 Conj E Bloco 2/4 Sala 617	Número: 701 CEP: 70340-000 Cidade: Brasília - DF			
4. Atividade Técnica				
Execução	Quantidade Unidade			
Projeto de pavimentação asfáltica para rodovias	6,7000 quilômetro			
Após a conclusão das atividades técnicas o pro	fissional deverá proceder à baixa desta ART.			
5. Observações — Projeto básico e executivo para 6,7 km de via, na ligação STN geotécnicos.	EPIA, sem co-responsabilidade pelos ensaios			
6. Declarações	VINICIUS RESENDE Assinado de forma digital por VINICIUS			
Qualquer conflito ou litígio originado do presente contrato, be interpretação ou execução, será resolvido por arbitragem, de a	em como sua DOMINGUES:03075571113 AESENDE DOMINGUES:03075571113 Dados: 2022.02.18 14:07:00-03007			
9.307, de 23 de setembro de 1996, nos termos do respectivo re arbitragem que, expressamente, as partes declaram concordar.	cordo com a Lei nº Profissional egulamento de PAULO CAVALCANTI DE Assinado de forma digital por PAULO CAVALCANTI DE ALBUQUERQUE:35727578434 Dados 2020,218 185929-9000			
arotragom que, expressamente, as partes dectaram concordar.	Contratante			
Acessibilidade: Sim: Declaro atendimento às regras de acessib Decreto nº 5.296, de 2 de dezembro de 2004.	oilidade, previstas nas normas técnicas da ABNT e no			
7. Entidade de Classe	9. Informações			
NENHUMA	- A ART é válida somente quando quitada, mediante apresentação do comprovante de pagamento ou conferência no site do Crea.			
8. Assinaturas	- A autenticidade deste documento pode ser verificada no site:			

Declaro serem verdadeiras as informações acima Local Data VINICIUS RESENDE DOMINGUES:03075571113

Assinado de forma digital por VINICIUS RESENDE DOMINGUES:03075571113

Dados: 2022.02.18 14:0645-03'00'

VINICIUS RESENDE DOM 4 INICIUS RESENDE DOM 5 INICIUS R VINICIUS RESENDE DOMINGUES - CPF: 030.755.711-13 PAULO CAVALCANTI DE ALBUQUERQUE:35727578434 Assinado de forma digital por PAULO CAVALCANTI DE ALBUQUERQUE:35727578434 Dados: 2022.02.18 18:59:56 -03'00' AeT ARQUITETURA, PLANEJAMENTO E TRANSPORTES LTDA-EPP - CPF/CNPJ: 01.136.983/0001-50

- A guarda da via assinada da ART será de responsabilidade do profissional e do contratante com o objetivo de documentar o vínculo contratual.

www.creadf.org.br informacao@creadf.org.br Tel: (61) 3961-2800

