

٠	CÓDIGO	REV.	
	MC-DF001-20	-05-2019-DER-001-001	Α
	EMISSÃO ELABORADO POR		FOLHA
	Maio / 2019	1 de 22	
	EMITENTE		

		Maio / 2019 EMITENTE	JHLD / MLGM / IJS	1 de 22	
DOCUN		NCEE			
EMITENTE NCEE - NÚCLEO DE CAPACITAÇÃO EM ENGENHARIA DE ESTRUTURAS LTDA					
DF003 - ESTRADA PARQUE INDÚSTRIA E ABASTECIMENTO (EPIA) - Km 13					
CIDADE BRASÍLIA - DF		sub-trecho DF-025 (EPDB) a DF-075 (EPNB)		
MEMÓRIA DE CÁLCULO – PON	ITES SOBRE O CÓRREGO	O RIACHO FUNDO			
ELABORAÇÃO Eng.º João Henrique L. Damasceno Eng.º Matheus Lorena G. Marquesi Eng.º Tiago J. Santos	RESP. TÉCNICO	VERIFICAÇÃO Eng.º João Henrique L. Damasceno Eng.º Matheus Lorena G. Marquesi Eng.º Tiago J. Santos	LIBERAÇÃO	APROVAÇÃO	
DOCUMENTOS DE REFERÊNCIA CADASTRAMENTO GEOMÉTRICO					
DOCUMENTOS RESULTANTES					

OBSERVAÇÕES

DATA	RESP. TÉCNICO	VERIFICAÇÃO	LIBERAÇÃO	APROVAÇÃO
_				

CÓDIGO	REV.	
MC-DF001-20	Α	
EMISSÃO	FOLHA	
Maio / 2019	JHLD / MLGM / TJS	2 de 22
EMITENTE		

Sumário

1	APRESENTAÇÃO	. 3
2	CONSIDERAÇÕES GERAIS 2.1 LOCALIZAÇÃO DA OBRA	.3 .3 .4
3	SOFTWARES UTILIZADOS	. 6
4	APRESENTAÇÃO DOS MODELOS, MATERIAIS, RESULTADOS E SOLUÇÕES ADOTADA 4.1 MODELO COMPUTACIONAL E DE CÁLCULO	.7 .8 11 15 17
ΑI	NEXO A – CÁLCULOS DAS ARMADURAS NO ESTÁDIO 2 – TENSÃO ADMISSÍVEL ARMAD COM TENSÃO ADMISSÍVEL DE 150MPA (NB1)	

TOTAL 22 PÁGINAS

CÓDIGO	REV.	
MC-DF001-20-05-2019-DER-001-001		Α
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	JHLD / MLGM / TJS	3 de 22

DOCUMENTO TÉCNICO

1 APRESENTAÇÃO

Este relatório integra o conjunto de documentos associados às pontes sob o córrego Riacho Fundo, situadas no km 13 da DF-003 - Estrada Parque Industria e Abastecimento (EPIA), entre Candangolândia e Park Way, na cidade de Brasília-DF, e trata do memorial de cálculo do projeto básico de recuperação e readequação de tremtipo das obras.

São objetos do presente Memorial de Cálculo: a apresentação da tabela de esforços nas longarinas e lajes tanto para o cenário correspondente a data do projeto original quanto do cenário relativo à recuperação e readequação de trem tipo; resultados do dimensionamento para ambos os cenários e a definição do reforço estrutural.

2 CONSIDERAÇÕES GERAIS

2.1 LOCALIZAÇÃO DA OBRA

Nome da obra - Pontes Sobre o Córrego Riacho Fundo

Rodovia - DF-003 - Estrada Parque Industria e Abastecimento (EPIA) km-13

Subtrecho - DF-025 (EPDB) a DF-075 (EPNB)

2.2 CARACTERÍSTICAS DA OAE EXISTENTE

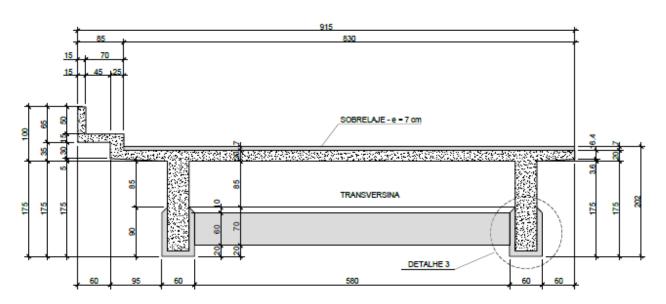
Trata-se de duas Obras de Arte Especiais (OAE) em traçado retilíneo, reto ao obstáculo e em nível longitudinal e transversal constituídas, cada uma, por uma ponte (seção antiga, em amarelo) e por um alargamento (em cinza), conforme Figura 1. Não foram avaliados os alargamentos.

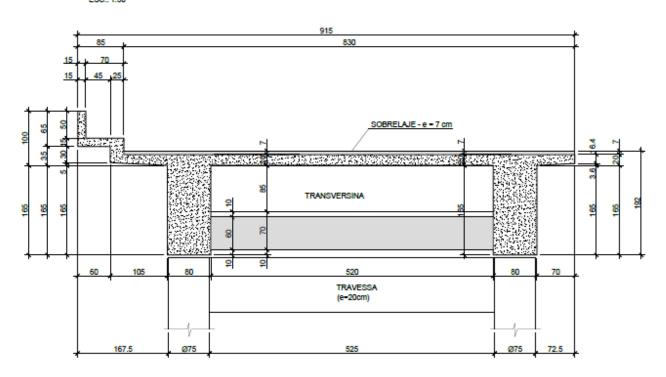
Ambas as pontes apresentam extensão de 30,40m, composta por tabuleiro único isostático de 1 (um) vão e 2 (dois) balanços longitudinais. Possuem superestrutura com arranjo estrutural tipo 2 (duas) vigas e mesoestrutura formada por 2 (duas) linhas de apoio.

Transversalmente a obra apresenta largura total de 9,15m, compreendendo duas faixas de rolamento no mesmo sentido, perfazendo leito carroçável com 8,30m (largura útil), bem como passeio com guarda-corpo em um dos lados e junta longitudinal (Detalhe D1 - Figura 1), a qual separa a ponte em análise do Alargamento feito posteriormente (Figura 1).

BARREIRA D2 S GUARDA-CORPO

Figura 1: Seção transversal típica da Ponte + Alargamento

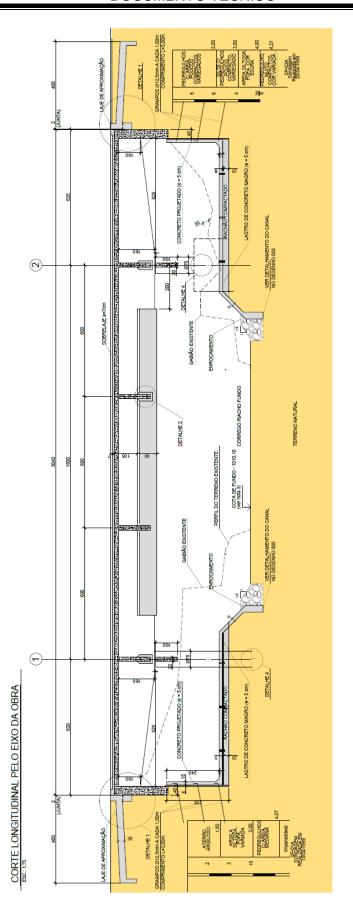

Ponte analisada (em amarelo); Alargamento (em cinza)


CÓDIGO	REV.		
MC-DF001-20	Α		
EMISSÃO	ELABORADO POR	FOLHA	
Maio / 2019 JHLD / MLGM / TJS		4 de 22	
CMITCHITC			

2.3 CARACTERÍSTICAS DA OAE COM REFORÇO PROPOSTO

SEÇÃO TRANSVERSAL NO VÃO

SEÇÃO TRANSVERSAL NOS APOIOS ESC.: 1:50



CÓDIGO	REV.	
MC-DF001-20-05-2019-DER-001-001		Α
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	JHLD/MLGM/TJS	5 de 22

EMITENTE

NCEE

DOCUMENTO TÉCNICO

CÓDIGO	REV.	
MC-DF001-2	Α	
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	JHLD / MLGM / TJS	6 de 22
EMITENTE		

NCEE

2.4 ESPECIFICAÇÕES TÉCNICAS

Como se trata de projeto de uma ponte construída em meados da década de 1960, levou-se em consideração, para a obtenção das armaduras existentes, as Normas Brasileiras vigentes na época de construção das OAE's, e bibliografias complementares como seguem:

- NB1 Cálculo e execução de obras de concreto armado;
- NB2 Cálculo e execução de pontes de concreto armado;
- NB6 Cargas para pontes rodoviárias;

O projeto de readequação, recuperação e reforço estrutural foi elaborado conforme as Normas Brasileiras atuais:

- NBR 6118:2014 Projeto de Estruturas de Concreto Procedimento;
- NBR 6122:2010 Projeto e Execução de Fundações;
- NBR 6123:1988 Forças devidas ao vento em edificações Procedimento;
- NBR 7187:2003 Projeto e Execução de Pontes em Concreto Armado e Protendido;
- NBR 7188:2013 Carga móvel rodoviária e de pedestres em pontes, viadutos, passarelas e outras estruturas.

3 SOFTWARES UTILIZADOS

- Ftool;
- Microsoft Office Word;
- Microsoft Office Excel.

3.1 Programa Ftool

Ferramenta para análise de estruturas bidimensionais (determinação dos esforços solicitantes, reações e deslocamentos). Detalhes sobre o programa podem ser obtidos no endereço eletrônico: https://www.alis-sol.com.br/Ftool/.

3.2 Planilhas de Cálculo - Excel

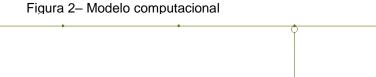
Planilhas de cálculo parametrizadas e elaboradas para dimensionamento / verificação de estruturas, a saber:

- Dimensionamento à flexão, torção e cisalhamento;
- Verificação ELS

4 APRESENTAÇÃO DOS MODELOS, MATERIAIS, RESULTADOS E SOLUÇÕES ADOTADAS

Pelo fato de não se ter o projeto original das pontes, estimaram-se as armações existentes a partir das normas de 1960: NB6 (Norma de cargas móveis em pontes rodoviárias) e NB1 (Norma de cálculo e execução de obras de concreto armado). Na sequência, são calculadas as armaduras necessárias para as normas atuais NBR7188: 2013 (Norma de cargas em pontes rodoviárias) e a NBR 6118: 2014 (Norma de concreto estrutural). Foi considerado que o aço existente é o C37A com $f_{adm} = 150$ MPa e $f_y = 240$ MPa.

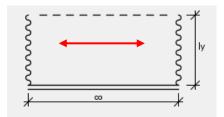
Ressalta-se que, neste projeto básico, foram adotadas lajes de aproximação em ambas extremidades das obras, sendo apoiada por articulação de concreto (freyssinet) na estrutura existente. Além disso, foi adotada sobrelaje com 7 cm de espessura, além de aumento de seção de longarinas e transversinas.

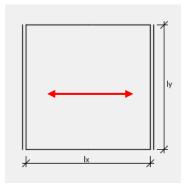

CÓDIGO	REV.		
MC-DF001-20-05-2019-DER-001-001 A			
EMISSÃO	ELABORADO POR	FOLHA	
Maio / 2019	JHLD / MLGM / TJS	7 de 22	
EMITENTE			

NCEE

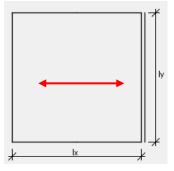
4.1 MODELO COMPUTACIONAL E DE CÁLCULO

Foi elaborado um modelo computacional bidimensional (2D) em que foram aplicadas as cargas permanentes, além do trem-tipo longitudinal para cálculo das vigas Longarinas.


A Figura 2 apresenta em elevação longitudinal o modelo computacional elaborado.


Fonte: Próprio autor

Para as lajes, foram consideradas as seguintes hipósteses de vinculação para o balanço e para a laje típica central.


Balanço:

Laje central (entre transversinas intermediárias):

Laje central (entre transversinas encontro e intermediárias):

Setas em vermelho: direção do tráfego

CÓDIGO		REV.
MC-DF001-20-05-2019-DER-001-001		Α
EMISSÃO ELABORADO POR		FOLHA
Maio / 2019	JHLD / MLGM / TJS	8 de 22
FMITCHTE		

4.2 CARREGAMENTOS VERTICAIS ATUANTES NA SUPERESTRUTURA (VIGAS LONGARINAS)

• Cargas permanentes por Viga Longarina

Longarina s/ reforço (h=145 cm)	1,7 tf/m
Longarina c/ aumento da seção*	1,8 tf/m
Laje	2,3 tf/m
Pavimento	1,1 tf/m
GR	1,0 tf/m
Recapeamento (novo)*	0,9 tf/m
Sobrelaje 7 cm (novo)*	0,8 tf/m

NB6	NBR 7188
6,0 tf/m	7,8 tf/m
Transversinas	2,1 tf
Laje de aproximação (novo)*	6,8 tf

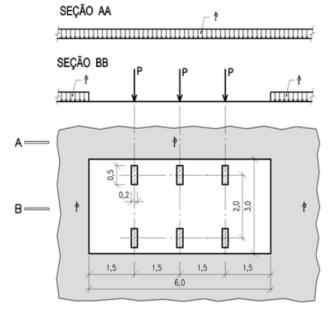
^{*} considerado para a situação final

Carga Móvel

A Figura 3 apresenta o trem-tipo considerado para a situação original de projeto

Figura 3- TB36 conforme norma NB6/1960

DA	VEICULO		CARGA UNIFORMEMENTE DISTRIBUÍDA			CLASSE
	Tipo	Pêso Total (t)	p (kg/m^2)	p' (kg/m²)	Disposição da carga	DA RODOVIA
36	36	36	500	300	Carga p à frente e atrás do	Classe I
24	24	24	400	300	veículo. Carga p' no	Classe II
12	12	12	300	300	restante da pista e passeios.	Classe III

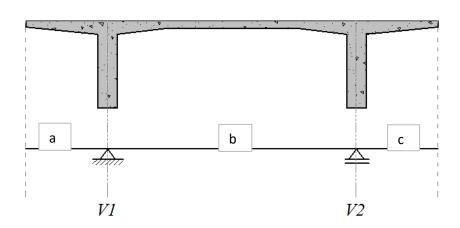


CÓDIGO	REV.	
MC-DF001-20)-05-2019-DER-001-001	Α
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	JHLD/MLGM/TJS	9 de 22
EMITENTE	·	

T		
200		2,00
1		
	6.00	

Para a readequação foi considerado o Trem-tipo TB450 conforme prescrito no item 5 da NBR 7188:2013. O veículo a ser utilizado possui 6 rodas com carga de 75kN ≈ 7,5tf cada, dispostas como mostra a Figura 4. A sobrecarga distribuída devido à multidão deverá ser de 5kN/m² ≈ 0,5tf/m².

Figura 4– TB450 conforme norma ABNT NBR7188:2013


Dimensões em m

Na sequência são apresentados os cálculos realizados para determinação do trem-tipo longitudinal máximo (TTL_{máx}) tanto para o TB36 quanto para o TB450.

CÓDIGO	REV.	
MC-DF001-20-05-2019-DER-001-001		Α
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	JHLD / MLGM / TJS	10 de 22
EMITENTE		

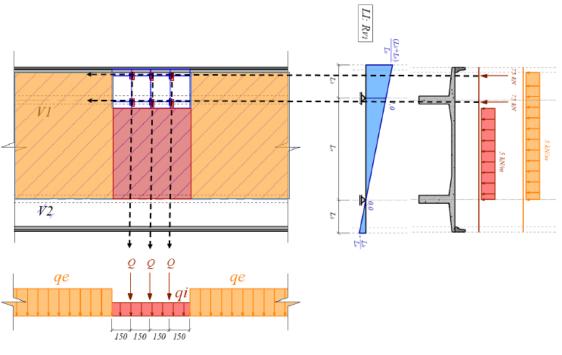
Carga Variável devido ao Trem-tipo

c(m) =

GR(m) =

1,0

0,4


Transversal

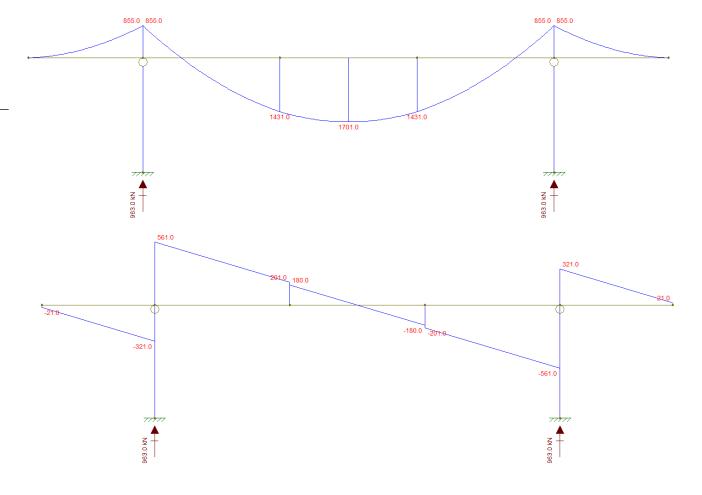
6,1

2

Longitudinal

Determinação do TTL máx - V1

TB36		TB45	
P (tf) =	11,52	P (tf) =	14,40
pi (tfm) =	0,49	pi (tfm) =	0,82
ne (tfm) -	1 27	ne (tfm) -	2 11

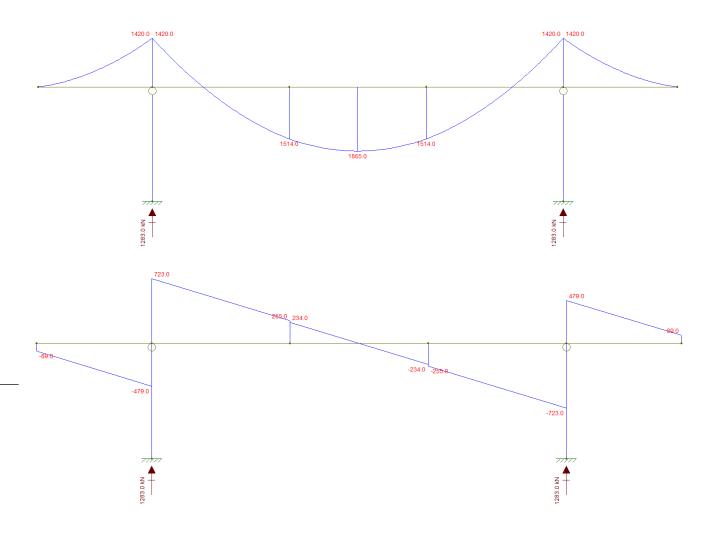

CÓDIGO	REV.	
MC-DF001-20-05-2019-DER-001-001		Α
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	JHLD / MLGM / TJS	11 de 22

NB6		NBR 7188		
φ =		1,27	CIV =	1,31
			CNF =	1,00
Q (tf) =		14,68	Q (tf) =	18,90
qi (tf/m) =		0,63	qi (tf/m) =	1,08
qe (tf/m) =		1,62	qe (tf/m) =	2,77

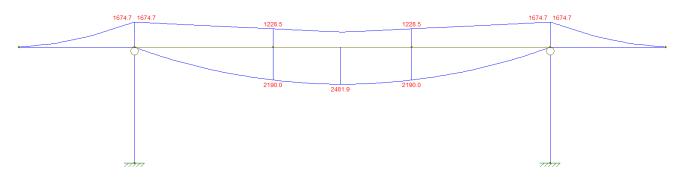
4.3 ESFORÇOS SOLICITANTES NA VIGA CENTRAL E REFORÇOS

Permanente

Projeto original (kNm; kN)

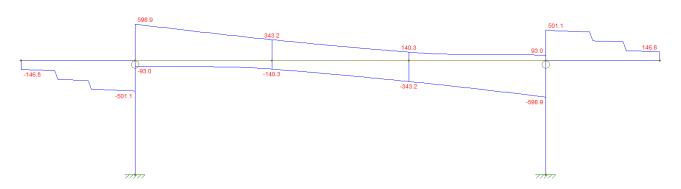

CÓDIGO	REV.	
MC-DF001-20-05-2019-DER-001-001		Α
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	JHLD / MLGM / TJS	12 de 22
CMITCHTC		

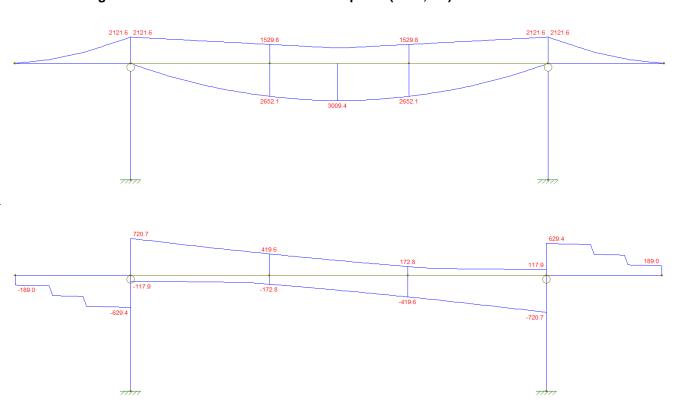
IENIE


NCEE

DOCUMENTO TÉCNICO

Projeto de readequação (kNm; kN)


• Carga Móvel TB36 - com coeficiente de impacto (kNm; kN)



CÓDIGO	REV.	
MC-DF001-20	F001-20-05-2019-DER-001-001	
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	JHLD / MLGM / TJS	13 de 22
EMITENTE		

NCEE

Carga Móvel TB450 - com coeficiente de impacto (kNm; kN)

Para o cálculo da previsão das armaduras do projeto original foi utilizado a combinação característica dos esforços uma vez que as armaduras eram calculadas no estádio II, por tensões admissíveis. Já para o cenário atual, foi utilizado a combinação de cálculo com fatores de 1,35 para permanente e 1,5 para acidental, e o cálculo se desenvolveu no estádio III.

Além dos esforços obtidos nas análises anteriores, foi considerado metade da laje de aproximação contribuindo com carga em ambas extremidades. Isso aumentou o momento negativo e diminui o positivo. Essa diminuição não foi considerada, a favor da segurança.

CÓDIGO	REV.	
MC-DF001-20-05-2019-DER-001-001		Α
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	JHLD / MLGM / TJS	14 de 22

EMITENTE

DOCUMENTO TÉCNICO

NCEE

	[kNm]				=
	NB6		NBR 7188		
positivo	Mg=	1701,0	Mg=	2124,0	(sem o
	Mq=	2482,0	Mq=	3010,0	
	Md =	6019,4	Md =	7382,4	
	Mk =	4183,0	Mk =	5134,0	
negativo	Mg=	855	Mg=	1420	(com o
	Mq=	1675	Mq=	2352	
	Md =	3666,8	Md =	5445,0	
	Mk =	2530,0	Mk =	3772,0	

(sem carregamento da laje de aproximação)

(com carregamento da laje de aproximação)

positivo

Secão	M _d (kNm)	h (cm)	hf (cm)	d (cm)	bf (cm)	bw (cm)	x (cm)	A _{s,cal} (cm²)	
NB6 - Estádio 3	6019.4	185	20	175	120	40	46.27	86.04	CA50
NB6 - Estádio 2								180.00	CA37A - f _{adm} = 150 MPa
NBR 7188: 2013	7382.4	202	27	192	120	40	39.44	95.57	CA50
negativo	-								
NB6 - Estádio 3	3666.8	192	20	182	80	80	27.60	49.33	CA50
NB6 - Estádio 2								95.00	CA37A - f _{adm} = 150 Mpa
NBR 7188: 2013	5445.0	192	20	182	80	80	42.46	75.89	CA50

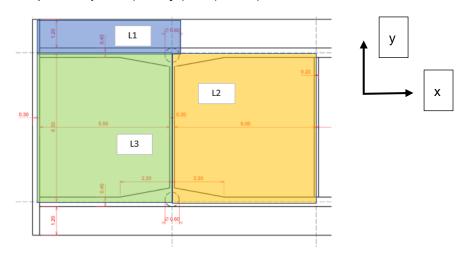
positivo

	REFORÇO:	9.17	cm²	4 φ 20mm (12.6)
NBR 7188: 2013	95.57	CA50		CA37A - f _{yk} = 240 Mpa
NB6 - Estádio 2	86.40	CA50 equival	ente	CA37A - f _{adm} = 150 Mpa
NB6 - Estádio 3	86.04	CA50		
Secão	A _s (cm ²)			

negativo

NB6 - Estádio 3	49.33	CA50	
NB6 - Estádio 2	45.60	CA50 equivalente	CA37A - f _{adm} = 150 Mpa
NBR 7188: 2013	75.89	CA50	CA37A - f _{yk} = 240 Mpa
	REFORÇO:	30.29 cm ²	6 φ 25mm (30)

Como a metodologia de cálculo dos estribos pela norma de 1960 não considerava a parcela de contribuição do concreto Vc que vale, segundo a NBR6118, Vc = 0,6*0,15*30^(2/3)*1000*1,85*0,4 = 640 kN (cerca de um terço do esforço total de cálculo), a armadura existente está verificada em todas as situações.


CÓDIGO	REV.	
MC-DF001-20	Α	
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	15 de 22	
EMITENTE		<u>.</u>

DOCUMENTO TÉCNICO

4.4 ESFORÇOS SOLICITANTES NAS LAJES E REFORÇOS

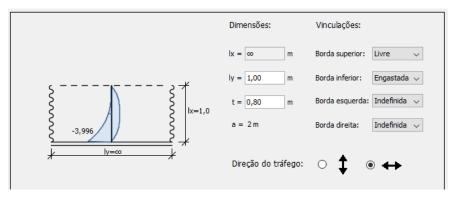
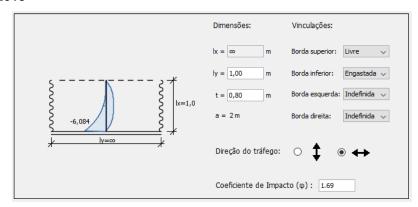

Para o cálculo das lajes foram utilizadas as tabelas de Rüsch para levantamentos dos esforços solicitantes. Os coeficientes de impacto utilizados para estimar a armadura existente é de 1,3 segundo a NB2. Para a readequação foi utilizado 1,35 para as lajes distantes mais de 5m das juntas e para as próximas, utilizou-se o CIA (coeficiente adicional de impacto) de 1,25.

Figura 5 – Em planta, lajes L1 (balanço), L2 (central) e L3 na extremidade.



Para L1 (em balanço) os momentos devidos o Trem-tipo são apresentados abaixo:

NB6

NBR 7188:2013

CÓDIGO	REV.	
MC-DF001-2	Α	
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	16 de 22	
EMITENTE		

NI	_	
IN	·	
	_	

	NB6		NBR 7188	
negativo	Mg=	0.23	Mg=	0.25
	Mq=	3.7	Mq=	6.1
	Mk =	3.9	Md =	9.5

Os demais cálculos seguem a mesma metodologia e são resumidos a seguir:

L 2

Direção Y

	[tfm]			
	NB6		NBR 7188	
positivo	Mg=	0.54	Mg=	0.51
	Mq=	2.26	Mq=	2.60
	Mk =	2.80	Md =	4.59

Direção X

	[tfm]					
	NB6		NBR 7188			
positivo	Mg=	0,54	Mg=	0.73		
	Mq=	2,76	Mq=	3.36		
-	Mk =	3,30	Md =	6.03		
negativo	Mg=	1,24	Mg=	1.70		
	Mq=	6,98	Mq=	8.57		
	Mk =	8,22	Md =	15.15		

L3 Direção X

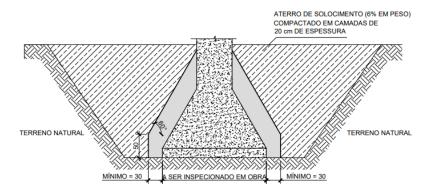
	[tfm]			
	NB6		NBR 7188	
positivo	Mg=	0.54	Mg=	0.33
	Mq=	3.30	Mq=	5.40
	Mk =	3.84	Md =	8.55
negativo	Mg=	1.24	Mg=	0.78
	Mq=	8.00	Mq=	13.00
	Mk =	9.24	Md =	20.55

CÓDIGO	REV.	
MC-DF001-20	Α	
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	17 de 22	
EMITENTE	•	

DOCUMENTO TÉCNICO

Direção Y

	[tfm]					
	NB6		NBR 7188			
positivo	Mg=	0.50	Mg=	0.30		
	Mq=	3.40	Mq=	5.54		
	Mk =	3.90	Md =	8.72		


(cm²/m)

Seção	C37A necessário	C37A existente*	Reforço CA50	Adotado **	
Negativo L1	15.59	11.09	2.16	4	φ 10 c/ 20
Negativo L2 (x)	24.82	23.08	0.84	10	φ 12.5 c/ 12.5
Positivo L2 (y)	9.17	15.00	0.00	0	
Positivo L2 (x)	12.13	15.00	0.00	0	
Negativo L3 (x)	39.26	23.08	7.77	10	φ12.5 c/ 12.5
Positivo L3 (x)	17.42	18	0.00	0	
Positivo L3 (y)	17.78	18	0.00	0	

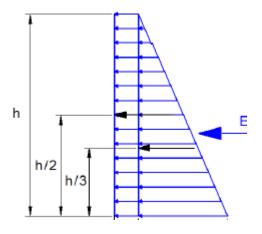
^{*} valor corrigido pela relação entre braços uma vez que as armaduras estão em posições diferentes

4.5 FUNDAÇÃO

Os tubulões deverão ser inspecionados para averiguação do tamanho real da base. A tensão máxima na base deve ficar abaixo de 6 MPa. Caso a tensão seja superior, sugere-se o alargamento da base como ilustrado abaixo.

4.6 LAJE DE APROXIMAÇÃO

As lajes de aproximação foram concebidas com as dimensões correntes, comprimento de 4 metros e espessura de 30 cm, ligadas na estrutura por articulação tipo freyssinet. A taxa de armadura adotada, baseada em outras obras, foi de 100 kg/m³ para o projeto básico.


^{**} foram adotados valores superiores ao calculados nesta fase de projeto básico para atender a fadiga nas novas barras e eventuais perdas por corrosão

EMITENTE		
Maio / 2019	18 de 22	
EMISSÃO	ELABORADO POR	FOLHA
MC-DF001-20	Α	
CÓDIGO		REV.

4.7 **C**ONTENÇÃO

As contenções possuem 15 cm de espessura além de 5cm de concreto projetado. A taxa de armadura adotada foi de 100 kg/m³ para o projeto básico. A obtenção deste valor considerou, a favor da segurança, que a contenção possui 2,50 m em balanço, ou seja, que os tirantes de CA50 instalados servem apenas para garantir a estabilidade do talude. Desta forma, adotando 0,33 de coeficiente de empuxo ativo, 1,8 tf/m³ de peso específico de solo, e 0,5 tf/m² de acidental vertical no maciço tem-se para a um trecho de 1m em profundidade, em balanço:

 $M_d = 1.4*(0.5*0.33*2.5^2/2 + 1.8*2.5/2*2.5/3 + 0.33*1.8*2.5) = 5.4 \text{ tfm/m}$

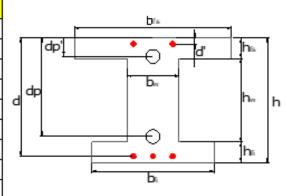
Considerando a região logo acima da mísula: Md = 5,1 tfm/m

As, nec = $10.4 \text{ cm}^2/\text{m} \rightarrow \text{adotado } 10.7 \text{ cm}^2/\text{m} \ (\phi \ 10 \text{ c}/ \ 7.5).$

Para as armaduras na outra face e horizontal adotou-se a mínima de 2,25 cm²/m (ρ = 0,15%) ou ϕ 6,3 c/ 14.

CÓDIGO	REV.	
MC-DF001-20	Α	
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	JHLD/MLGM/TJS	19 de 22
EMITENTE	_	

ANEXO A - CÁLCULOS DAS ARMADURAS NO ESTÁDIO 2 - TENSÃO ADMISSÍVEL ARMADURA COM TENSÃO ADMISSÍVEL DE 150MPA (NB1)


	CÓDIGO		REV.
	MC-DF001-20-05-2019-DER-001-001		Α
•	EMISSÃO	ELABORADO POR	FOLHA
	Maio / 2019	20 de 22	

DOCUMENTO TÉCNICO

Negativo V1

<u>ANÁLISE DE SEÇÕES DE CONCRETO ARMADO E PROTENDIDO NOS ESTÁDIOS I e II</u>

Características Geométricas			
b _{fr}	0.0	cm	
h _{fr}	0.0	cm	
Ь	80.0	cm	
h	192.0	cm	
b_{fi}	120.0	cm	
h _{fi}	20.0	cm	
h	212.0	cm	
d	202.0	cm	
ď	5.0	cm	
d,	0.0	cm	
d₅'		cm	

CALCULAR

Características do aço			
A,	95.0	cm³	
A,		cm³	
A,	0.0	cm³	
Α,		cm³	
E _{pr6}		m/m	
Epr6		ш\ш	
E,	195000.0	MPa	
E,	210000.0	MPa	

Propriedades Geométricas			
А	1.78	m,	
у,	1.10	E	
Уi	1.02	Е	
ı	0.70588	m ⁴	

LIMPAR RESULTADOS

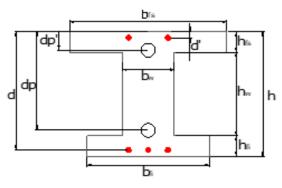
Característica do concreto			
E., 14000.0 MPa			
"para considerar o efeito diferido em peças de CA, utilizas Ec - Es			

Resultados		
ε ₀	-2.21E-04	m/m
ĸ	5.32E-06	cm ⁻¹
×	68.87	cm
σ _C	5.13	MPa
σ _S	-148.74	MPa
σ _S '	0.00	MPa
σ _P	0.00	MPa
σ _P '	0.00	MPa

Esforços solicitantes de serviço			
N_k	0.0	tf	
M _k	253.0	tf.m	

Encontrado As = $95 \text{ cm}^2 \text{ para fy} = 148,7 \text{ MPa}.$

CÓDIGO		REV.
MC-DF001-20-05-2019-DER-001-001		Α
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	JHLD/MLGM/TJS	21 de 22
EMITENTE		


NCEE

LIMPAR RESULTADOS

Positivo V1

ANÁLISE DE SEÇÕES DE CONCRETO ARMADO E PROTENDIDO NOS ESTÁDIOS Le II

Características Geométricas			
b_{fx}	120.0	cm	
h _{fr}	20.0	cm	
Ь	40.0	cm	
h	165.0	cm	
b_{fi}	0.0	cm	
$h_{\rm fi}$	0.0	cm	
h	185.0	ст	
d	175.0	ст	
ď	10.0	cm	
d,	0.0	cm	
ď⁵,		cm	

CALCULAR

Características do aço		
Α,	180.0	cm²
A,		cm²
A _p	0.0	cm²
A,¹		cm³
E _{pr6}		m/m
Epr6		m/m
E,	195000.0	MPa
E,	210000.0	MPa

Propriedades Geométricas		
А	0.90	m'
y,	0.78	E
Уi	1.07	E
I	0.30113	m ⁴

Característica do concreto		
E.,	14000.0	MPa

"para considerar o efeito diferido em peças de CA, utilizas Ec - Es	715
bara comprant a priprio ampriado imbedar ap está acusta per-m	

Esforços solicitantes de serviço		
N_k	0.0	tf
M_k	418.2	tf.m

	Resultados		
7 000 00	lm		
<u>κ</u> /.65Ε-06 er	n ⁻¹		
х 82.19 с	m		
σ _c 8.80 MI	Pa		
σ _s -149.09 MI	Pa		
σ _s ' 0.00 MI	Pa		
σ _P 0.00 MI	Pa		
σ _P ' 0.00 MI	Pa		

Encontrado As = $180 \text{ cm}^2 \text{ para fy} = 149,1 \text{ MPa}.$

CÓDIGO		REV.
MC-DF001-20-05-2019-DER-001-001		Α
EMISSÃO	ELABORADO POR	FOLHA
Maio / 2019	JHLD/MLGM/TJS	22 de 22

EMITENTE

NCEE

Negativo L1

ANÁLISE DE SEÇÕES DE CONCRETO ARMADO E PROTENDIDO NOS ESTÁDIOS Le II

Características Geométricas		
b _{fr}	100.0	c
h _{fr}	26.7	c
Ь	0.0	c
hu	0.0	cm
Ь _{ғі}	0.0	cm
h _{fi}	0.0	c
h	26.7	c
d	22.7	c
ď	4.0	cm
d,	0.0	cm
d₅'		cm

Características do aço		
A,	14.0	cm³
A,		cm³
A,	0.0	cm³
A, '		cm³
Epré		m/m
Epré'		m/m
E,	195000.0	MPa
E,	210000.0	MPa

Propriedades Geométricas			
А	0.27	m³	
9,	0.13	m	

0.13

0.00158

 y_{i}

m

m⁴

۲,	210000.0	i i i a	
Característica do concreto			
E.,	14000.0	MPa	
*para considerar o efeito diferido em peças de CA, utilizar Ec - Es/1			
Esforços solicitantes de serviço			
N _k	0.0	tf	
M _k	4.2	tf.m	

Resultados		
٤٥	-2.63E-04	m/m
κ	4.82E-05	cm ⁻¹
×	7.88	cm
σ _C	5.32	MPa
σ _S	-149.70	MPa
σ _s '	0.00	MPa
σ _P	0.00	MPa
σ _P '	0.00	MPa

Encontrado As = 14 cm^2 para fy = 149.7 MPa.